Wang Yi-Cheng, Wu Ming-Tsung, Lin Yan-Jun, Tang Feng-Yao, Ko Hsin-An, Chiang En-Pei
Department of Food Science and Biotechnology, National Chung Hsing University.
J Nutr Sci Vitaminol (Tokyo). 2015;61 Suppl:S148-50. doi: 10.3177/jnsv.61.S148.
Folate-mediated one-carbon metabolism is an important therapeutic target of human diseases. We extensively investigated how gene-nutrient interactions may modulate human cancer risk in 2 major folate metabolic genes, MTHFR and GNMT. The biochemical impacts of MTHFR and GNMT on methyl group supply, global DNA methylation, nucleotide biosynthesis, DNA damage, and partitioning of the folate dependent 1-carbon group were carefully studied. The distinct model systems used included: EB virus-transformed lymphoblasts expressing human MTHFR polymorphic genotypes; liver-derived GNMT-null cell-lines with and without GNMT overexpression; and HepG2 cells with stabilized inhibition of MTHFR using shRNA, GNMT wildtype, heterozygotous (GNMT(het)) and knockout (GNMT(nul)) mice. We discovered that the MTHFR TT genotype significantly reduces folate-dependent remethylation under folate restriction, but it assists purine synthesis when folate is adequate. The advantage of de novo purine synthesis found in the MTHFR TT genotype may account for the protective effect of MTHFR in human hematological malignancies. GNMT affects transmethylation kinetics and S-adenosylmethionine (adoMet) synthesis, and facilitates the conservation of methyl groups by limiting homocysteine remethylation fluxes. Restoring GNMT assists methylfolate-dependent reactions and ameliorates the consequences of folate depletion. GNMT expression in vivo improves folate retention and bioavailability in the liver. Loss of GNMT impairs nucleotide biosynthesis. Over-expression of GNMT enhances nucleotide biosynthesis and improves DNA integrity by reducing uracil misincorporation in DNA both in vitro and in vivo. The systematic series of studies gives new insights into the underlying mechanisms by which MTHFR and GNMT may participate in human tumor prevention.
叶酸介导的一碳代谢是人类疾病的一个重要治疗靶点。我们广泛研究了基因-营养素相互作用如何调节2个主要叶酸代谢基因MTHFR和GNMT中的人类癌症风险。仔细研究了MTHFR和GNMT对甲基供应、整体DNA甲基化、核苷酸生物合成、DNA损伤以及叶酸依赖性一碳基团分配的生化影响。所使用的不同模型系统包括:表达人类MTHFR多态基因型的EB病毒转化淋巴母细胞;有和没有GNMT过表达的肝脏来源的GNMT缺失细胞系;以及使用shRNA稳定抑制MTHFR的HepG2细胞、GNMT野生型、杂合子(GNMT(het))和敲除(GNMT(nul))小鼠。我们发现,MTHFR TT基因型在叶酸限制下显著降低叶酸依赖性再甲基化,但在叶酸充足时有助于嘌呤合成。在MTHFR TT基因型中发现的从头嘌呤合成优势可能解释了MTHFR在人类血液系统恶性肿瘤中的保护作用。GNMT影响转甲基动力学和S-腺苷甲硫氨酸(adoMet)合成,并通过限制同型半胱氨酸再甲基化通量促进甲基的保留。恢复GNMT有助于甲基叶酸依赖性反应,并改善叶酸耗竭的后果。体内GNMT表达可提高肝脏中叶酸的保留和生物利用度。GNMT缺失会损害核苷酸生物合成。GNMT过表达可增强核苷酸生物合成,并通过减少体外和体内DNA中尿嘧啶的错误掺入来改善DNA完整性。这一系列系统性研究为MTHFR和GNMT可能参与人类肿瘤预防的潜在机制提供了新的见解。