Department of Clinical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy.
Medicina (Kaunas). 2019 Jun 21;55(6):296. doi: 10.3390/medicina55060296.
Several researchers have analyzed the alterations of the methionine cycle associated with liver disease to clarify the pathogenesis of human hepatocellular carcinoma (HCC) and improve the preventive and the therapeutic approaches to this tumor. Different alterations of the methionine cycle leading to a decrease of S-adenosylmethionine (SAM) occur in hepatitis, liver steatosis, liver cirrhosis, and HCC. The reproduction of these changes in MAT1A-KO mice, prone to develop hepatitis and HCC, demonstrates the pathogenetic role of gene under-regulation associated with up-regulation of the gene (MAT1A:MAT2A switch), encoding the SAM synthesizing enzymes, methyladenosyltransferase I/III (MATI/III) and methyladenosyltransferase II (MATII), respectively. This leads to a rise of MATII, inhibited by the reaction product, with a consequent decrease of SAM synthesis. Attempts to increase the SAM pool by injecting exogenous SAM have beneficial effects in experimental alcoholic and non-alcoholic steatohepatitis and hepatocarcinogenesis. Mechanisms involved in hepatocarcinogenesis inhibition by SAM include: (1) antioxidative effects due to inhibition of nitric oxide (NO•) production, a rise in reduced glutathione (GSH) synthesis, stabilization of the DNA repair protein Apurinic/Apyrimidinic Endonuclease 1 (APEX1); (2) inhibition of and expression prevention of NF-kB activation, and induction of overexpression of the oncosuppressor gene; (3) an increase in expression of the ERK inhibitor DUSP1; (4) inhibition of PI3K/AKT expression and down-regulation of and gene transcripts; (5) blocking LKB1/AMPK activation; (6) DNA and protein methylation. Different clinical trials have documented curative effects of SAM in alcoholic liver disease. Furthermore, SAM enhances the IFN-α antiviral activity and protects against hepatic ischemia-reperfusion injury during hepatectomy in HCC patients with chronic hepatitis B virus (HBV) infection. However, although SAM prevents experimental tumors, it is not curative against already established experimental and human HCCs. The recent observation that the inhibition of MATA and expression by miRNAs leads to a rise of endogenous SAM and strong inhibition of cancer cell growth could open new perspectives to the treatment of HCC.
几位研究人员分析了与肝病相关的蛋氨酸循环改变,以阐明人类肝细胞癌 (HCC) 的发病机制,并改善对这种肿瘤的预防和治疗方法。在肝炎、肝脂肪变性、肝硬化和 HCC 中,不同的蛋氨酸循环改变导致 S-腺苷甲硫氨酸 (SAM) 的产生减少。在易发生肝炎和 HCC 的 MAT1A-KO 小鼠中重现这些变化,证明了与基因下调相关的致病作用,该基因下调导致基因上调(MAT1A:MAT2A 转换),编码 SAM 合成酶,甲基腺苷转移酶 I/III (MATI/III) 和甲基腺苷转移酶 II (MATII)。这导致 MATII 增加,被反应产物抑制,SAM 合成随之减少。通过注射外源性 SAM 增加 SAM 池的尝试在实验性酒精性和非酒精性脂肪性肝炎和肝癌发生中具有有益的效果。SAM 抑制肝癌发生的机制包括:(1)抑制一氧化氮 (NO•) 产生的抗氧化作用,还原型谷胱甘肽 (GSH) 合成增加,DNA 修复蛋白脱嘌呤/嘧啶内切酶 1 (APEX1) 稳定;(2) 抑制 和 表达,预防 NF-kB 激活,并诱导肿瘤抑制基因的过表达;(3) 增加 ERK 抑制剂 DUSP1 的表达;(4) 抑制 PI3K/AKT 表达和下调 和 基因转录物;(5) 阻断 LKB1/AMPK 激活;(6) DNA 和蛋白质甲基化。不同的临床试验记录了 SAM 在酒精性肝病中的治疗效果。此外,SAM 增强 IFN-α 抗病毒活性,并在慢性乙型肝炎病毒 (HBV) 感染的 HCC 患者肝切除术中保护肝脏免受缺血再灌注损伤。然而,尽管 SAM 可预防实验性肿瘤,但对已建立的实验性和人类 HCC 并无治疗作用。最近的观察结果表明,miRNA 对 MATA 和 表达的抑制导致内源性 SAM 增加和癌细胞生长的强烈抑制,这为 HCC 的治疗开辟了新的前景。