Suppr超能文献

Bi2S3 纳米线与 TiO2 纳米棒交织:一种提高光电化学性能的有效策略。

The interlace of Bi2S3 nanowires with TiO2 nanorods: An effective strategy for high photoelectrochemical performance.

机构信息

State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.

State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China.

出版信息

J Colloid Interface Sci. 2016 Nov 1;481:91-9. doi: 10.1016/j.jcis.2016.07.045. Epub 2016 Jul 19.

Abstract

A netlike heterostructure is constructed by interlacing the Bi2S3 nanowires with well-aligned TiO2 nanorod arrays via a facile and effective solvothermal method. The winding Bi2S3 nanowires with several hundred nanometers long and 20-30nm wide are distributed in the interspace of TiO2 nanorods and cross-linked with these nanorods reducing the isolation of nanorods. The photoelectrochemical characterizations show that in addition to the high stability in air without any encapsulation, the netlike heterostructure exhibits an enhanced photoelectrochemical performance compared with TiO2 nanorods and controlled Bi2S3/TiO2 nanoparticle structure. The dual roles of Bi2S3 nanowires (1) as sensitizer for the enlargement of photoresponse range and (2) as multiple electron transport channels facilitating the fast separation of photogenerated electron-hole pairs are considered as key factors for the high energy conversion efficiency of 2.96%. This facile synthesis method offers an attractive strategy to further improve the photoelectrochemical performance of semiconductors and undoubtedly shows promising applications in solar conversion and storage devices.

摘要

通过一种简便有效的溶剂热方法,将 Bi2S3 纳米线与排列整齐的 TiO2 纳米棒阵列交织在一起,构建了一种网状异质结构。这种网状异质结构中,几百纳米长、20-30nm 宽的缠绕 Bi2S3 纳米线分布在 TiO2 纳米棒的间隙中,并与这些纳米棒交联,减少了纳米棒的隔离。光电化学特性表明,除了在空气中无需任何封装即可保持高稳定性外,与 TiO2 纳米棒和对照的 Bi2S3/TiO2 纳米颗粒结构相比,网状异质结构表现出增强的光电化学性能。Bi2S3 纳米线的双重作用(1)作为敏化剂,扩大光响应范围,(2)作为多个电子传输通道,促进光生电子-空穴对的快速分离,被认为是提高能量转换效率 2.96%的关键因素。这种简便的合成方法为进一步提高半导体的光电化学性能提供了一种有吸引力的策略,无疑在太阳能转换和存储器件中显示出了有前景的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验