Suppr超能文献

微流控纺丝构建黑磷混合微纤维,用于制备高能量密度柔性超级电容器的无纺织物。

Microfluidic-spinning construction of black-phosphorus-hybrid microfibres for non-woven fabrics toward a high energy density flexible supercapacitor.

机构信息

State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009, PR China.

i-Lab, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123, PR China.

出版信息

Nat Commun. 2018 Nov 1;9(1):4573. doi: 10.1038/s41467-018-06914-7.

Abstract

Flexible supercapacitors have recently attracted intense interest. However, achieving high energy density via practical materials and synthetic techniques is a major challenge. Here, we develop a hetero-structured material made of black phosphorous that is chemically bridged with carbon nanotubes. Using a microfluidic-spinning technique, the hybrid black phosphorous-carbon nanotubes are further assembled into non-woven fibre fabrics that deliver high performance as supercapacitor electrodes. The flexible supercapacitor exhibits high energy density (96.5 mW h cm), large volumetric capacitance (308.7 F cm), long cycle stability and durability upon deformation. The key to performance lies in the open two-dimensional structure of the black phosphorous/carbon nanotubes, plentiful channels (pores <1 nm), enhanced conduction, and mechanical stability as well as fast ion transport and ion flooding. Benefiting from this design, high-energy flexible supercapacitors can power various electronics (e.g., light emitting diodes, smart watches and displays). Such designs may guide the development of next-generation wearable electronics.

摘要

柔性超级电容器最近引起了人们的极大兴趣。然而,通过实际材料和合成技术实现高能量密度是一个主要挑战。在这里,我们开发了一种由黑磷制成的杂化结构材料,该材料通过化学键与碳纳米管相连。使用微流控纺丝技术,将混合的黑磷-碳纳米管进一步组装成无纺纤维织物,作为超级电容器电极具有优异的性能。这种柔性超级电容器具有高能量密度(96.5mWhcm)、大体积电容(308.7Fcm)、在变形时的长循环稳定性和耐用性。性能的关键在于黑磷/碳纳米管的开放二维结构、丰富的通道(<1nm 的孔)、增强的导电性以及机械稳定性,还有快速的离子输运和离子浸润。得益于这种设计,高能柔性超级电容器可为各种电子设备(如发光二极管、智能手表和显示器)供电。这种设计可能会为下一代可穿戴电子产品的发展提供指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3463/6212570/5596eb9ec996/41467_2018_6914_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验