Kioumourtzoglou Marianthi-Anna, Schwartz Joel, James Peter, Dominici Francesca, Zanobetti Antonella
From the Departments of aEnvironmental Health, bEpidemiology, & cBiostatistics, Harvard T.H. Chan School of Public Health, Boston, MA.
Epidemiology. 2016 Mar;27(2):221-7. doi: 10.1097/EDE.0000000000000422.
The reported estimated effects between long-term PM2.5 exposures and mortality vary spatially. We assessed whether community-level variables, including socioeconomic status indicators and temperature, modify this association.
We used data from >35 million Medicare enrollees from 207 US cities (2000-2010). For each city, we calculated annual PM2.5 averages, measured at ambient central monitoring sites. We used a variation of a causal modeling approach and fitted city-specific Cox models, which we then pooled using a random effects meta-regression. In this second stage, we assessed whether temperature and city-level variables, including smoking and obesity rates, poverty, education and greenness, modify the long-term PM2.5-mortality association.
We found an association between long-term PM2.5 and survival (hazard ratio = 1.2; 95% confidence interval [CI]: 1.1, 1.3 per 10 μg/m increase in the annual PM2.5 average concentrations). We observed elevated estimates in the Southeastern, South and Northwestern US (hazard ratio = 1.9; 95% CI: 1.7, 2.2, and 1.4; 95% CI: 1.2, 1.7, and 1.4; 95% CI: 1.1, 1.9, respectively). We observed a higher association between long-term PM2.5 exposure and mortality in warmer cities. Furthermore, we observed increasing estimates with increasing obesity rates, %residents and families in poverty, %black residents and %population without a high school degree, and lower effects with increasing median household income and %white residents.
To the best of our knowledge, this is the first study to assess modification by temperature and community-level characteristics on the long-term PM2.5-survival association. Our findings suggest that living in cities with high temperatures and low socio economic status (SES) is associated with higher effect estimates.
长期暴露于细颗粒物(PM2.5)与死亡率之间的估计效应在空间上存在差异。我们评估了包括社会经济地位指标和温度在内的社区层面变量是否会改变这种关联。
我们使用了来自美国207个城市(2000 - 2010年)超过3500万医疗保险参保者的数据。对于每个城市,我们计算了在环境中央监测点测量的年度PM2.5平均值。我们采用了一种因果建模方法的变体,并拟合了特定城市的Cox模型,然后使用随机效应元回归进行汇总。在第二阶段,我们评估了温度和城市层面变量,包括吸烟率、肥胖率、贫困率、教育程度和绿化程度,是否会改变长期PM2.5与死亡率之间的关联。
我们发现长期暴露于PM2.5与生存率之间存在关联(风险比 = 1.2;95%置信区间[CI]:每年PM2.5平均浓度每增加10μg/m³,风险比为1.1,1.3)。我们在美国东南部、南部和西北部观察到较高的估计值(风险比分别为1.9;95%CI:1.7,2.2;1.4;95%CI:1.2,1.7;1.4;95%CI:1.1,1.9)。我们观察到在较温暖的城市中,长期暴露于PM2.5与死亡率之间的关联更高。此外,我们观察到随着肥胖率、贫困居民和家庭百分比、黑人居民百分比以及没有高中学历人口百分比的增加,估计值上升,而随着家庭收入中位数和白人居民百分比的增加,效应降低。
据我们所知,这是第一项评估温度和社区层面特征对长期PM2.5与生存率关联的修正作用的研究。我们的研究结果表明,生活在高温且社会经济地位(SES)较低的城市与较高的效应估计值相关。