Suppr超能文献

亨廷顿舞蹈症果蝇模型中的早发性睡眠缺陷反映了蛋白激酶A/环磷腺苷效应元件结合蛋白信号通路的改变。

Early-onset sleep defects in Drosophila models of Huntington's disease reflect alterations of PKA/CREB signaling.

作者信息

Gonzales Erin D, Tanenhaus Anne K, Zhang Jiabin, Chaffee Ryan P, Yin Jerry C P

机构信息

Department of Medical Genetics.

Neuroscience Training Program and.

出版信息

Hum Mol Genet. 2016 Mar 1;25(5):837-52. doi: 10.1093/hmg/ddv482. Epub 2015 Nov 24.

Abstract

Huntington's disease (HD) is a progressive neurological disorder whose non-motor symptoms include sleep disturbances. Whether sleep and activity abnormalities are primary molecular disruptions of mutant Huntingtin (mutHtt) expression or result from neurodegeneration is unclear. Here, we report Drosophila models of HD exhibit sleep and activity disruptions very early in adulthood, as soon as sleep patterns have developed. Pan-neuronal expression of full-length or N-terminally truncated mutHtt recapitulates sleep phenotypes of HD patients: impaired sleep initiation, fragmented and diminished sleep, and nighttime hyperactivity. Sleep deprivation of HD model flies results in exacerbated sleep deficits, indicating that homeostatic regulation of sleep is impaired. Elevated PKA/CREB activity in healthy flies produces patterns of sleep and activity similar to those in our HD models. We were curious whether aberrations in PKA/CREB signaling were responsible for our early-onset sleep/activity phenotypes. Decreasing signaling through the cAMP/PKA pathway suppresses mutHtt-induced developmental lethality. Genetically reducing PKA abolishes sleep/activity deficits in HD model flies, restores the homeostatic response and extends median lifespan. In vivo reporters, however, show dCREB2 activity is unchanged, or decreased when sleep/activity patterns are abnormal, suggesting dissociation of PKA and dCREB2 occurs early in pathogenesis. Collectively, our data suggest that sleep defects may reflect a primary pathological process in HD, and that measurements of sleep and cAMP/PKA could be prodromal indicators of disease, and serve as therapeutic targets for intervention.

摘要

亨廷顿舞蹈症(HD)是一种进行性神经疾病,其非运动症状包括睡眠障碍。睡眠和活动异常是突变型亨廷顿蛋白(mutHtt)表达的原发性分子破坏,还是神经退行性变的结果尚不清楚。在此,我们报告HD的果蝇模型在成年早期睡眠模式一形成就表现出睡眠和活动紊乱。全长或N端截短的mutHtt的泛神经元表达概括了HD患者的睡眠表型:睡眠起始受损、睡眠碎片化和减少以及夜间多动。HD模型果蝇的睡眠剥夺导致睡眠缺陷加剧,表明睡眠的稳态调节受损。健康果蝇中升高的PKA/CREB活性产生了与我们的HD模型相似的睡眠和活动模式。我们好奇PKA/CREB信号异常是否是我们早发性睡眠/活动表型的原因。通过cAMP/PKA途径减少信号传导可抑制mutHtt诱导的发育致死性。基因敲低PKA可消除HD模型果蝇的睡眠/活动缺陷,恢复稳态反应并延长平均寿命。然而,体内报告基因显示,当睡眠/活动模式异常时,dCREB2活性不变或降低,这表明PKA和dCREB2在发病早期就发生了解离。总体而言,我们的数据表明睡眠缺陷可能反映了HD的原发性病理过程,睡眠和cAMP/PKA的测量可能是疾病的前驱指标,并可作为干预的治疗靶点。

相似文献

1
Early-onset sleep defects in Drosophila models of Huntington's disease reflect alterations of PKA/CREB signaling.
Hum Mol Genet. 2016 Mar 1;25(5):837-52. doi: 10.1093/hmg/ddv482. Epub 2015 Nov 24.
3
Mutant huntingtin disturbs circadian clock gene expression and sleep patterns in Drosophila.
Sci Rep. 2019 May 9;9(1):7174. doi: 10.1038/s41598-019-43612-w.
6
Pathogenic Huntington Alters BMP Signaling and Synaptic Growth through Local Disruptions of Endosomal Compartments.
J Neurosci. 2017 Mar 22;37(12):3425-3439. doi: 10.1523/JNEUROSCI.2752-16.2017. Epub 2017 Feb 24.
8
Heat shock promotes inclusion body formation of mutant huntingtin (mHtt) and alleviates mHtt-induced transcription factor dysfunction.
J Biol Chem. 2018 Oct 5;293(40):15581-15593. doi: 10.1074/jbc.RA118.002933. Epub 2018 Aug 24.
9
Regulation of sleep by the short neuropeptide F (sNPF) in Drosophila melanogaster.
Insect Biochem Mol Biol. 2013 Sep;43(9):809-19. doi: 10.1016/j.ibmb.2013.06.003. Epub 2013 Jun 21.

引用本文的文献

1
Sleep Disorders in Patients with Choreic Syndromes.
Curr Neurol Neurosci Rep. 2023 Jul;23(7):361-379. doi: 10.1007/s11910-023-01274-2. Epub 2023 Jun 3.
2
Germline variants in tumor suppressor FBXW7 lead to impaired ubiquitination and a neurodevelopmental syndrome.
Am J Hum Genet. 2022 Apr 7;109(4):601-617. doi: 10.1016/j.ajhg.2022.03.002.
4
Novel genomic targets of valosin-containing protein in protecting pathological cardiac hypertrophy.
Sci Rep. 2020 Oct 22;10(1):18098. doi: 10.1038/s41598-020-75128-z.
5
Ataxin2 functions via CrebA to mediate Huntingtin toxicity in circadian clock neurons.
PLoS Genet. 2019 Oct 8;15(10):e1008356. doi: 10.1371/journal.pgen.1008356. eCollection 2019 Oct.
6
MicroRNA in Brain pathology: Neurodegeneration the Other Side of the Brain Cancer.
Noncoding RNA. 2019 Feb 23;5(1):20. doi: 10.3390/ncrna5010020.
7
Control of Sleep Onset by Shal/K4 Channels in Circadian Neurons.
J Neurosci. 2018 Oct 17;38(42):9059-9071. doi: 10.1523/JNEUROSCI.0777-18.2018. Epub 2018 Sep 5.
8
The Tiny for the Biggest Answers in Huntington's Disease.
Int J Mol Sci. 2018 Aug 14;19(8):2398. doi: 10.3390/ijms19082398.
9
Selection for long and short sleep duration in Drosophila melanogaster reveals the complex genetic network underlying natural variation in sleep.
PLoS Genet. 2017 Dec 14;13(12):e1007098. doi: 10.1371/journal.pgen.1007098. eCollection 2017 Dec.

本文引用的文献

1
Sleep restores behavioral plasticity to Drosophila mutants.
Curr Biol. 2015 May 18;25(10):1270-81. doi: 10.1016/j.cub.2015.03.027. Epub 2015 Apr 23.
2
The impact of sleep and circadian disturbance on hormones and metabolism.
Int J Endocrinol. 2015;2015:591729. doi: 10.1155/2015/591729. Epub 2015 Mar 11.
3
Targeting ATM ameliorates mutant Huntingtin toxicity in cell and animal models of Huntington's disease.
Sci Transl Med. 2014 Dec 24;6(268):268ra178. doi: 10.1126/scitranslmed.3010523.
4
Early and progressive circadian abnormalities in Huntington's disease sheep are unmasked by social environment.
Hum Mol Genet. 2014 Jul 1;23(13):3375-83. doi: 10.1093/hmg/ddu047. Epub 2014 Jan 31.
5
Aging induced endoplasmic reticulum stress alters sleep and sleep homeostasis.
Neurobiol Aging. 2014 Jun;35(6):1431-41. doi: 10.1016/j.neurobiolaging.2013.12.005. Epub 2013 Dec 14.
6
Choosing an animal model for the study of Huntington's disease.
Nat Rev Neurosci. 2013 Oct;14(10):708-21. doi: 10.1038/nrn3570.
8
Genetic manipulations of mutant huntingtin in mice: new insights into Huntington's disease pathogenesis.
FEBS J. 2013 Sep;280(18):4382-94. doi: 10.1111/febs.12418. Epub 2013 Jul 31.
10
dCREB2-mediated enhancement of memory formation.
J Neurosci. 2013 Apr 24;33(17):7475-87. doi: 10.1523/JNEUROSCI.4387-12.2013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验