From the Department of Cell Biology and Neuroscience and.
Department of Chemistry and Chemical Biology, Rutgers State University of New Jersey, Piscataway, New Jersey 08854.
J Biol Chem. 2018 Oct 5;293(40):15581-15593. doi: 10.1074/jbc.RA118.002933. Epub 2018 Aug 24.
PolyQ-expanded huntingtin (mHtt) variants form aggregates, termed inclusion bodies (IBs), in individuals with and models of Huntington's disease (HD). The role of IB diffusible mHtt in neurotoxicity remains unclear. Using a ponasterone (PA)-inducible cell model of HD, here we evaluated the effects of heat shock on the appearance and functional outcome of Htt103Q-EGFP expression. Quantitative image analysis indicated that 80-90% of this mHtt protein initially appears as "diffuse" signals in the cytosol, with IBs forming at high mHtt expression. A 2-h heat shock during the PA induction reduced the diffuse signal, but greatly increased mHtt IB formation in both cytosol and nucleus. Dose- and time-dependent mHtt expression suggested that nucleated polymerization drives IB formation. RNA-mediated knockdown of heat shock protein 70 (HSP70) and heat shock cognate 70 protein (HSC70) provided evidence for their involvement in promoting diffuse mHtt to form IBs. Reporter gene assays assessing the impacts of diffuse IB mHtt showed concordance of diffuse mHtt expression with the repression of heat shock factor 1, cAMP-responsive element-binding protein (CREB), and NF-κB activity. CREB repression was reversed by heat shock coinciding with mHtt IB formation. In an embryonic striatal neuron-derived HD model, the chemical chaperone sorbitol similarly promoted the structuring of diffuse mHtt into IBs and supported cell survival under stress. Our results provide evidence that mHtt IB formation is a chaperone-supported cellular coping mechanism that depletes diffusible mHtt conformers, alleviates transcription factor dysfunction, and promotes neuron survival.
聚谷氨酰胺扩展的 huntingtin (mHtt) 变体在亨廷顿病 (HD) 患者和模型中形成聚集体,称为包含体 (IBs)。IB 中可扩散的 mHtt 在神经毒性中的作用仍不清楚。本研究使用 ponasterone (PA) 诱导的 HD 细胞模型,评估了热休克对 Htt103Q-EGFP 表达出现和功能结果的影响。定量图像分析表明,这种 mHtt 蛋白的 80-90%最初以细胞质中的“弥散”信号出现,在高 mHtt 表达时形成 IBs。PA 诱导期间进行 2 小时的热休克会减少弥散信号,但会大大增加细胞质和核内的 mHtt IB 形成。剂量和时间依赖性的 mHtt 表达表明核聚合驱动 IB 的形成。RNA 介导的热休克蛋白 70 (HSP70) 和热休克同源 70 蛋白 (HSC70) 的敲低为它们参与促进弥散 mHtt 形成 IB 提供了证据。评估弥散 IB mHtt 影响的报告基因分析表明,弥散 mHtt 的表达与热休克因子 1、cAMP 反应元件结合蛋白 (CREB) 和 NF-κB 活性的抑制一致。弥散 mHtt 的表达与 CREB 抑制一致,与热休克同时发生时可逆转 CREB 抑制。在胚胎纹状体神经元衍生的 HD 模型中,化学伴侣山梨醇同样促进了弥散 mHtt 形成结构,并在应激下支持细胞存活。我们的结果提供了证据,表明 mHtt IB 的形成是一种伴侣蛋白支持的细胞应对机制,它消耗可扩散的 mHtt 构象体,减轻转录因子功能障碍,并促进神经元存活。