Wang Shanmin, Zhu Jinlong, Zhang Yi, Yu Xiaohui, Zhang Jianzhong, Wang Wendan, Bai Ligang, Qian Jiang, Yin Liang, Sullivan Neil S, Jin Changqing, He Duanwei, Xu Jian, Zhao Yusheng
Institute of Atomic & Molecular Physics, Sichuan University, Chengdu 610065, China; High Pressure Science & Engineering Center and Physics Department, University of Nevada, Las Vegas, NV 89154; Los Alamos Neutron Science Center and Materials Science & Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545;
High Pressure Science & Engineering Center and Physics Department, University of Nevada, Las Vegas, NV 89154; Los Alamos Neutron Science Center and Materials Science & Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545; National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
Proc Natl Acad Sci U S A. 2015 Dec 15;112(50):15320-5. doi: 10.1073/pnas.1510415112. Epub 2015 Nov 24.
The Mott insulator in correlated electron systems arises from classical Coulomb repulsion between carriers to provide a powerful force for electron localization. Turning such an insulator into a metal, the so-called Mott transition, is commonly achieved by "bandwidth" control or "band filling." However, both mechanisms deviate from the original concept of Mott, which attributes such a transition to the screening of Coulomb potential and associated lattice contraction. Here, we report a pressure-induced isostructural Mott transition in cubic perovskite PbCrO3. At the transition pressure of ∼3 GPa, PbCrO3 exhibits significant collapse in both lattice volume and Coulomb potential. Concurrent with the collapse, it transforms from a hybrid multiferroic insulator to a metal. For the first time to our knowledge, these findings validate the scenario conceived by Mott. Close to the Mott criticality at ∼300 K, fluctuations of the lattice and charge give rise to elastic anomalies and Laudau critical behaviors resembling the classic liquid-gas transition. The anomalously large lattice volume and Coulomb potential in the low-pressure insulating phase are largely associated with the ferroelectric distortion, which is substantially suppressed at high pressures, leading to the first-order phase transition without symmetry breaking.
关联电子系统中的莫特绝缘体源于载流子之间的经典库仑排斥力,为电子局域化提供了强大的作用力。将这种绝缘体转变为金属,即所谓的莫特转变,通常是通过“带宽”控制或“能带填充”来实现的。然而,这两种机制都偏离了莫特的原始概念,莫特将这种转变归因于库仑势的屏蔽和相关的晶格收缩。在此,我们报道了立方钙钛矿PbCrO₃中压力诱导的同结构莫特转变。在约3 GPa的转变压力下,PbCrO₃的晶格体积和库仑势均出现显著崩塌。伴随着崩塌,它从一种混合多铁性绝缘体转变为金属。据我们所知,这些发现首次验证了莫特所设想的情形。在约300 K接近莫特临界状态时,晶格和电荷的涨落引发了弹性异常以及类似于经典液 - 气转变的朗道临界行为。低压绝缘相中异常大的晶格体积和库仑势在很大程度上与铁电畸变有关,而这种畸变在高压下被大幅抑制,从而导致了无对称性破缺的一级相变。