Weidhase Michael, Helm Conrad, Bleidorn Christoph
Molecular Evolution & Animal Systematics, Institute of Biology, University of Leipzig, Talstraße 33, D-04103 Leipzig, Germany.
Sars International Centre for Marine Molecular Biology, Thormøhlensgt. 55, N-5008 Bergen, Norway.
Zoological Lett. 2015 Aug 6;1:20. doi: 10.1186/s40851-015-0023-2. eCollection 2015.
Annelids exhibit great regenerative abilities, which are mainly used after injury or during reproduction. These lophotrochozoans thus represent excellent models for regeneration research. However, detailed morphological studies concerning annelid musculature and nervous system redevelopment are limited to few taxa, and do not allow for broader comparisons and general conclusions regarding common patterns amongst annelids.
Using immunohistochemical staining combined with confocal laser scanning microscopy (cLSM), we investigated the redevelopment of body wall musculature and nervous system during anterior and posterior posttraumatic regeneration in Timarete cf. punctata. Both regeneration processes start with wound healing, blastema formation, and blastema patterning. In posterior regeneration, this leads to the development of a new pygidium and a segment addition zone (SAZ) anterior to this structure. New segments are subsequently added in a sequential fashion. Anterior regeneration in contrast shows the formation of a new prostomium and peristomium first, followed by the simultaneous redevelopment of three segments, and an additional three segments in sequential order. Anterior muscular regeneration shows an outgrowth of longitudinal musculature from the residual body wall musculature, while circular musculature develops independently within the blastema. During posterior regeneration, new musculature becomes visible when the new segments reached a certain age. Neuronal regeneration begins with neurite outgrowth from the old ventral nerve cord in both cases, which are later forming loop structures. In anterior regeneration, the brain redevelops at the anteriormost position of the loops.
Posterior regeneration recapitulates normal growth from a certain timepoint with serial segment development by a posterior segment addition zone. Anterior regeneration is more complex, showing similarities to larval development in matters of the order, in which prostomium, peristomium, and segments are generated. Furthermore, we demonstrate the usefulness of regeneration studies to investigate morphological structures and evolutionary processes.
环节动物具有很强的再生能力,主要在受伤后或繁殖过程中发挥作用。因此,这些触手冠动物是再生研究的优秀模型。然而,关于环节动物肌肉组织和神经系统重新发育的详细形态学研究仅限于少数分类群,无法进行更广泛的比较并得出关于环节动物共同模式的一般性结论。
我们使用免疫组织化学染色结合共聚焦激光扫描显微镜(cLSM),研究了蒂姆雷特近似点纹亚种(Timarete cf. punctata)创伤后前后部再生过程中体壁肌肉组织和神经系统的重新发育。两个再生过程均始于伤口愈合、芽基形成和芽基模式形成。在后部再生中,这导致新的尾节和该结构前方的节段添加区(SAZ)的发育。随后依次添加新的节段。相比之下,前部再生首先显示出新的口前叶和围口节的形成,随后是三个节段的同时重新发育,以及另外三个节段的依次发育。前部肌肉再生表现为纵向肌肉组织从残留的体壁肌肉组织中长出,而环形肌肉组织在芽基内独立发育。在后部再生过程中,当新节段达到一定年龄时,新的肌肉组织开始可见。在这两种情况下,神经元再生均始于旧腹神经索的神经突长出,随后形成环状结构。在前部再生中,脑在环的最前端重新发育。
后部再生从某个时间点开始重现正常生长过程,通过后部节段添加区进行连续节段发育。前部再生更为复杂,在口前叶、围口节和节段的生成顺序方面与幼虫发育存在相似之处。此外,我们证明了再生研究在研究形态结构和进化过程方面的有用性。