Chakouch Mashhour K, Pouletaut Philippe, Charleux Fabrice, Bensamoun Sabine F
Biomechanics and Bioengineering Laboratory, UMR CNRS 7338, Sorbonne University, Université de Technologie de Compiègne, Compiègne, France.
ACRIM-Polyclinique Saint Côme, Compiègne, France.
J Magn Reson Imaging. 2016 Jun;43(6):1423-33. doi: 10.1002/jmri.25105. Epub 2015 Nov 25.
To measure the viscoelastic properties of passive thigh muscles using multifrequency magnetic resonance elastography (MMRE) and rheological models.
Four muscles in five volunteers underwent MMRE tests set up inside a 1.5T magnetic resonance imaging (MRI) scanner. Compression excitation was generated with a driver attached around the thigh, and waves were generated at 70, 90, and 110 Hz. In vivo experimental viscoelastic parameters (G(ω) = G' + i G″) were extracted from the wavelength and attenuation measurements along a local profile in the direction of the wave's displacement. The data-processing method was validated on a phantom using MMRE and RheoSpectris tests. The complex modulus (G(ω)) related to elasticity (μ) and viscosity (η) was then determined using four rheological models.
Zener was the best-fit model (χ ∼0.35 kPa) for the rheological parameters of all muscles. Similar behaviors for the elastic components for each muscle were found for the Zener and springpot models. The gracilis muscle showed higher elastic values (about 2 kPa) in both models compared to other muscles. The α-values for each muscle was equivalent to the ratio G″/G' at 90 Hz.
MMRE tests associated with data processing demonstrated that the complex shear modulus G(ω) of passive muscles could be analyzed using two rheological models. The viscoelastic data can be used as a reference for future assessment of muscular dysfunction. J. Magn. Reson. Imaging 2015. J. Magn. Reson. Imaging 2016;43:1423-1433.
使用多频磁共振弹性成像(MMRE)和流变学模型测量股部被动肌肉的粘弹性特性。
在5名志愿者身上的四块肌肉进行了在1.5T磁共振成像(MRI)扫描仪内设置的MMRE测试。通过连接在大腿周围的驱动器产生压缩激励,并在70、90和110Hz频率下产生波。从沿波位移方向的局部剖面的波长和衰减测量中提取体内实验粘弹性参数(G(ω)=G'+iG″)。该数据处理方法在使用MMRE和RheoSpectris测试的模型上得到了验证。然后使用四种流变学模型确定与弹性(μ)和粘度(η)相关的复模量(G(ω))。
对于所有肌肉的流变学参数,齐纳模型是最佳拟合模型(χ~0.35kPa)。在齐纳模型和弹簧罐模型中,发现每块肌肉的弹性成分具有相似的行为。与其他肌肉相比,股薄肌在两种模型中均显示出更高的弹性值(约2kPa)。每块肌肉的α值相当于90Hz时G″/G'的比值。
与数据处理相关的MMRE测试表明,可以使用两种流变学模型分析被动肌肉的复剪切模量G(ω)。粘弹性数据可作为未来评估肌肉功能障碍的参考。《磁共振成像杂志》2015年。《磁共振成像杂志》2016;43:1423 - 1433。