Suppr超能文献

基于局部相速度的粘弹性体模和组织成像

Local Phase Velocity Based Imaging of Viscoelastic Phantoms and Tissues.

作者信息

Kijanka Piotr, Urban Matthew W

出版信息

IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Mar;68(3):389-405. doi: 10.1109/TUFFC.2020.2968147. Epub 2021 Feb 25.

Abstract

Assessment of soft tissue elasticity and viscosity is of interest in several clinical applications. In this study, we present the feasibility of the local phase velocity based imaging (LPVI) method to create images of phase velocity and viscoelastic parameters in viscoelastic tissue-mimicking materials and soft tissues. In viscoelastic materials, it is necessary to utilize wave-mode isolation using a narrow bandpass filter combined with a directional filter in order to robustly reconstruct phase velocity images with LPVI in viscoelastic media over a wide range of frequencies. A pair of sequential focused acoustic radiation force push beams, focused once on the left-hand side and once on the right-hand side of the probe, was used to produce broadband propagating shear waves. The local shear wave phase velocity is then recovered in the frequency domain for multiple frequencies, for both acquired data sets. Then, a 2-D shear wave velocity map is reconstructed by combining maps from two separate acquisitions. By testing the method on simulated data sets and performing in vitro phantom and in vivo liver tissue experiments, we show the ability of the proposed technique to generate shear wave phase velocity maps at various frequencies in viscoelastic materials. Moreover, a nonlinear least-squares problem is solved in order to locally estimate elasticity and viscosity parameters. The LPVI method with added directional and wavenumber filters can produce phase velocity images, which can be used to characterize the viscoelastic materials.

摘要

软组织弹性和粘性的评估在多个临床应用中备受关注。在本研究中,我们展示了基于局部相速度成像(LPVI)方法在粘弹性组织模拟材料和软组织中创建相速度和粘弹性参数图像的可行性。在粘弹性材料中,有必要使用窄带通滤波器与方向滤波器相结合的波模式隔离方法,以便在宽频率范围内通过LPVI在粘弹性介质中稳健地重建相速度图像。一对顺序聚焦的声辐射力推动波束,一次聚焦在探头左侧,一次聚焦在探头右侧,用于产生宽带传播剪切波。然后针对两个采集数据集,在频域中恢复多个频率下的局部剪切波相速度。接着,通过组合来自两次单独采集的图来重建二维剪切波速度图。通过在模拟数据集上测试该方法并进行体外模型和体内肝脏组织实验,我们展示了所提出技术在粘弹性材料中生成不同频率下剪切波相速度图的能力。此外,为了局部估计弹性和粘性参数,求解了一个非线性最小二乘问题。添加了方向滤波器和波数滤波器的LPVI方法可以产生相速度图像,可用于表征粘弹性材料。

相似文献

1
Local Phase Velocity Based Imaging of Viscoelastic Phantoms and Tissues.
IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Mar;68(3):389-405. doi: 10.1109/TUFFC.2020.2968147. Epub 2021 Feb 25.
2
Fast Local Phase Velocity-Based Imaging: Shear Wave Particle Velocity and Displacement Motion Study.
IEEE Trans Ultrason Ferroelectr Freq Control. 2020 Mar;67(3):526-537. doi: 10.1109/TUFFC.2019.2948512. Epub 2019 Oct 21.
3
Ultrasound Shear Elastography With Expanded Bandwidth (USEWEB): A Novel Method for 2D Shear Phase Velocity Imaging of Soft Tissues.
IEEE Trans Med Imaging. 2024 May;43(5):1910-1922. doi: 10.1109/TMI.2024.3352097. Epub 2024 May 2.
4
Evaluation of Robustness of Local Phase Velocity Imaging in Homogenous Tissue-Mimicking Phantoms.
Ultrasound Med Biol. 2021 Dec;47(12):3514-3528. doi: 10.1016/j.ultrasmedbio.2021.08.002. Epub 2021 Aug 26.
5
Two Point Method For Robust Shear Wave Phase Velocity Dispersion Estimation of Viscoelastic Materials.
Ultrasound Med Biol. 2019 Sep;45(9):2540-2553. doi: 10.1016/j.ultrasmedbio.2019.04.016. Epub 2019 Jun 21.
6
Local Phase Velocity Based Imaging: A New Technique Used for Ultrasound Shear Wave Elastography.
IEEE Trans Med Imaging. 2019 Apr;38(4):894-908. doi: 10.1109/TMI.2018.2874545. Epub 2018 Oct 8.
7
Acoustic Radiation Force-Induced Creep-Recovery (ARFICR): A Noninvasive Method to Characterize Tissue Viscoelasticity.
IEEE Trans Ultrason Ferroelectr Freq Control. 2018 Jan;65(1):3-13. doi: 10.1109/TUFFC.2017.2768184.
8
Phase Velocity Estimation With Expanded Bandwidth in Viscoelastic Phantoms and Tissues.
IEEE Trans Med Imaging. 2021 May;40(5):1352-1362. doi: 10.1109/TMI.2021.3054950. Epub 2021 Apr 30.
9
Two-Point Frequency Shift Method for Shear Wave Attenuation Measurement.
IEEE Trans Ultrason Ferroelectr Freq Control. 2020 Mar;67(3):483-496. doi: 10.1109/TUFFC.2019.2945620. Epub 2019 Oct 4.
10
Improved two-point frequency shift power method for measurement of shear wave attenuation.
Ultrasonics. 2022 Aug;124:106735. doi: 10.1016/j.ultras.2022.106735. Epub 2022 Mar 29.

引用本文的文献

4
Characterizing dispersion in bovine liver using ARFI-based shear wave rheometry.
Biomed Phys Eng Express. 2024 Aug 30;10(5). doi: 10.1088/2057-1976/ad6b31.
6
Ultrasound Shear Elastography With Expanded Bandwidth (USEWEB): A Novel Method for 2D Shear Phase Velocity Imaging of Soft Tissues.
IEEE Trans Med Imaging. 2024 May;43(5):1910-1922. doi: 10.1109/TMI.2024.3352097. Epub 2024 May 2.
7
Evaluation of Robustness of S-Transform Based Phase Velocity Estimation in Viscoelastic Phantoms and Renal Transplants.
IEEE Trans Biomed Eng. 2024 Mar;71(3):954-966. doi: 10.1109/TBME.2023.3323983. Epub 2024 Feb 26.
8
Feasibility of Phase Velocity Imaging Using Multi Frequency Oscillation-Shear Wave Elastography.
IEEE Trans Biomed Eng. 2024 Feb;71(2):607-620. doi: 10.1109/TBME.2023.3309996. Epub 2024 Jan 19.
10
Imaging of Single Transducer-Harmonic Motion Imaging-Derived Displacements at Several Oscillation Frequencies Simultaneously.
IEEE Trans Med Imaging. 2022 Nov;41(11):3099-3115. doi: 10.1109/TMI.2022.3178897. Epub 2022 Oct 27.

本文引用的文献

1
Fast Local Phase Velocity-Based Imaging: Shear Wave Particle Velocity and Displacement Motion Study.
IEEE Trans Ultrason Ferroelectr Freq Control. 2020 Mar;67(3):526-537. doi: 10.1109/TUFFC.2019.2948512. Epub 2019 Oct 21.
2
Two Point Method For Robust Shear Wave Phase Velocity Dispersion Estimation of Viscoelastic Materials.
Ultrasound Med Biol. 2019 Sep;45(9):2540-2553. doi: 10.1016/j.ultrasmedbio.2019.04.016. Epub 2019 Jun 21.
3
Reconstruction of Viscosity Maps in Ultrasound Shear Wave Elastography.
IEEE Trans Ultrason Ferroelectr Freq Control. 2019 Apr 11. doi: 10.1109/TUFFC.2019.2908550.
4
Local Phase Velocity Based Imaging: A New Technique Used for Ultrasound Shear Wave Elastography.
IEEE Trans Med Imaging. 2019 Apr;38(4):894-908. doi: 10.1109/TMI.2018.2874545. Epub 2018 Oct 8.
5
Evaluating Renal Transplant Status Using Viscoelastic Response (VisR) Ultrasound.
Ultrasound Med Biol. 2018 Aug;44(8):1573-1584. doi: 10.1016/j.ultrasmedbio.2018.03.016. Epub 2018 May 10.
6
Robust Phase Velocity Dispersion Estimation of Viscoelastic Materials Used for Medical Applications Based on the Multiple Signal Classification Method.
IEEE Trans Ultrason Ferroelectr Freq Control. 2018 Mar;65(3):423-439. doi: 10.1109/TUFFC.2018.2792324.
7
Viscoelasticity Mapping by Identification of Local Shear Wave Dynamics.
IEEE Trans Ultrason Ferroelectr Freq Control. 2017 Nov;64(11):1666-1673. doi: 10.1109/TUFFC.2017.2743231. Epub 2017 Aug 23.
8
Comparative study of shear wave-based elastography techniques in optical coherence tomography.
J Biomed Opt. 2017 Mar 1;22(3):35010. doi: 10.1117/1.JBO.22.3.035010.
9
Improved Shear Wave Group Velocity Estimation Method Based on Spatiotemporal Peak and Thresholding Motion Search.
IEEE Trans Ultrason Ferroelectr Freq Control. 2017 Apr;64(4):660-668. doi: 10.1109/TUFFC.2017.2652143. Epub 2017 Jan 11.
10
Guidelines for Finite-Element Modeling of Acoustic Radiation Force-Induced Shear Wave Propagation in Tissue-Mimicking Media.
IEEE Trans Ultrason Ferroelectr Freq Control. 2017 Jan;64(1):78-92. doi: 10.1109/TUFFC.2016.2641299. Epub 2016 Dec 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验