Xie Ming, Sun Xiang, George Steven M, Zhou Changgong, Lian Jie, Zhou Yun
Wuhan ATMK Super EnerG Technologies, Inc., #7-5 JiaYuan Road, Wuhan 430073, China.
Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute , 110 Eighth Street, Troy, New York 12180, United States.
ACS Appl Mater Interfaces. 2015 Dec 23;7(50):27735-42. doi: 10.1021/acsami.5b08719. Epub 2015 Dec 14.
Amorphous SnO2 (a-SnO2) thin films were conformally coated onto the surface of reduced graphene oxide (G) using atomic layer deposition (ALD). The electrochemical characteristics of the a-SnO2/G nanocomposites were then determined using cyclic voltammetry and galvanostatic charge/discharge curves. Because the SnO2 ALD films were ultrathin and amorphous, the impact of the large volume expansion of SnO2 upon cycling was greatly reduced. With as few as five formation cycles best reported in the literature, a-SnO2/G nanocomposites reached stable capacities of 800 mAh g(-1) at 100 mA g(-1) and 450 mAh g(-1) at 1000 mA g(-1). The capacity from a-SnO2 is higher than the bulk theoretical values. The extra capacity is attributed to additional interfacial charge storage resulting from the high surface area of the a-SnO2/G nanocomposites. These results demonstrate that metal oxide ALD on high surface area conducting carbon substrates can be used to fabricate high power and high capacity electrode materials for lithium-ion batteries.
采用原子层沉积(ALD)法将非晶态二氧化锡(a-SnO2)薄膜均匀包覆在还原氧化石墨烯(G)表面。然后利用循环伏安法和恒电流充放电曲线测定了a-SnO2/G纳米复合材料的电化学特性。由于SnO2 ALD薄膜超薄且为非晶态,极大地降低了SnO2在循环过程中体积大幅膨胀的影响。在文献报道的仅五个形成循环的情况下,a-SnO2/G纳米复合材料在100 mA g(-1)时达到800 mAh g(-1)的稳定容量,在1000 mA g(-1)时达到450 mAh g(-1)的稳定容量。a-SnO2的容量高于其体相理论值。额外的容量归因于a-SnO2/G纳米复合材料高比表面积所导致的额外界面电荷存储。这些结果表明,在高比表面积导电碳基底上进行金属氧化物ALD可用于制备锂离子电池的高功率和高容量电极材料。