Suppr超能文献

附着于非晶态碳纳米管上的具有改善锂存储性能的NiCoO₂@SnO₂异质结构的合理设计

Rational Design of NiCoO2@SnO2 Heterostructure Attached on Amorphous Carbon Nanotubes with Improved Lithium Storage Properties.

作者信息

Xu Xin, Chen Sheng, Xiao Chunhui, Xi Kai, Guo Chaowei, Guo Shengwu, Ding Shujiang, Yu Demei, Kumar R Vasant

机构信息

Department of Applied Chemistry, School of Science, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University , Xi'an 710049, China.

Department of Materials Science and Metallurgy, University of Cambridge , Cambridge CB3 0FS, United Kingdom.

出版信息

ACS Appl Mater Interfaces. 2016 Mar 9;8(9):6004-10. doi: 10.1021/acsami.5b11556. Epub 2016 Feb 23.

Abstract

It still remains very challenging to design proper heterostructures to enhance the electrochemical performance of transition metal oxide-based anode materials for lithium-ion batteries. Here, we synthesized the NiCoO2 nanosheets@SnO2 layer heterostructure supported by amorphous carbon nanotubes (ACNTs) which is derived from polymeric nanotubes (PNTs) by a stepwise method. The inner SnO2 layer not only provides a considerable capacity contribution but also produces the extra Li2O to promote the charge process of NiCoO2 and thus results in a rising cycling performance. Combining with the contribution of ACNTs backbone and ultrathin NiCoO2 nanosheets, the specific capacities of these one-dimensional nanostructures show an interesting gradually increasing trend even after 100 cycles at 400 mA g(-1) with a final result of 1166 mAh g(-1). This approach can be an efficient general strategy for the preparation of mixed-metal-oxide one-dimensional nanostructures and this innovative design of hybrid electrode materials provides a promising approach for batteries with improved electrochemical performance.

摘要

设计合适的异质结构以增强用于锂离子电池的过渡金属氧化物基负极材料的电化学性能仍然极具挑战性。在此,我们通过逐步方法合成了由非晶态碳纳米管(ACNTs)支撑的NiCoO2纳米片@SnO2层异质结构,该非晶态碳纳米管由聚合物纳米管(PNTs)衍生而来。内部的SnO2层不仅提供了可观的容量贡献,还产生额外的Li2O以促进NiCoO2的充电过程,从而导致循环性能提高。结合ACNTs骨架和超薄NiCoO2纳米片的贡献,这些一维纳米结构的比容量即使在400 mA g(-1)下循环100次后仍呈现出有趣的逐渐增加趋势,最终结果为1166 mAh g(-1)。这种方法可以成为制备混合金属氧化物一维纳米结构的有效通用策略,并且这种混合电极材料的创新设计为具有改善电化学性能的电池提供了一种有前景的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验