Mendioroz Maite, Do Catherine, Jiang Xiaoling, Liu Chunhong, Darbary Huferesh K, Lang Charles F, Lin John, Thomas Anna, Abu-Amero Sayeda, Stanier Philip, Temkin Alexis, Yale Alexander, Liu Meng-Min, Li Yang, Salas Martha, Kerkel Kristi, Capone George, Silverman Wayne, Yu Y Eugene, Moore Gudrun, Wegiel Jerzy, Tycko Benjamin
Taub Institute for Research on Alzheimer's Disease and the Aging Brain and Institute for Cancer Genetics, Columbia University Medical Center, New York, NY, 10032, USA.
The Children's Guild Foundation Down Syndrome Research Program, Genetics Program and Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY, 14263, USA.
Genome Biol. 2015 Nov 25;16:263. doi: 10.1186/s13059-015-0827-6.
Trisomy 21 causes Down syndrome (DS), but the mechanisms by which the extra chromosome leads to deficient intellectual and immune function are not well understood.
Here, we profile CpG methylation in DS and control cerebral and cerebellar cortex of adults and cerebrum of fetuses. We purify neuronal and non-neuronal nuclei and T lymphocytes and find biologically relevant genes with DS-specific methylation (DS-DM) in each of these cell types. Some genes show brain-specific DS-DM, while others show stronger DS-DM in T cells. Both 5-methyl-cytosine and 5-hydroxy-methyl-cytosine contribute to the DS-DM. Thirty percent of genes with DS-DM in adult brain cells also show DS-DM in fetal brains, indicating early onset of these epigenetic changes, and we find early maturation of methylation patterns in DS brain and lymphocytes. Some, but not all, of the DS-DM genes show differential expression. DS-DM preferentially affected CpGs in or near specific transcription factor binding sites (TFBSs), implicating a mechanism involving altered TFBS occupancy. Methyl-seq of brain DNA from mouse models with sub-chromosomal duplications mimicking DS reveals partial but significant overlaps with human DS-DM and shows that multiple chromosome 21 genes contribute to the downstream epigenetic effects.
These data point to novel biological mechanisms in DS and have general implications for trans effects of chromosomal duplications and aneuploidies on epigenetic patterning.
21三体导致唐氏综合征(DS),但额外的染色体导致智力和免疫功能缺陷的机制尚不清楚。
在这里,我们分析了唐氏综合征患者以及对照的成人脑和小脑皮质及胎儿大脑中的CpG甲基化情况。我们纯化了神经元和非神经元细胞核以及T淋巴细胞,并在每种细胞类型中发现了具有唐氏综合征特异性甲基化(DS-DM)的生物学相关基因。一些基因表现出脑特异性的DS-DM,而另一些在T细胞中表现出更强的DS-DM。5-甲基胞嘧啶和5-羟甲基胞嘧啶都对DS-DM有贡献。在成人大脑细胞中具有DS-DM的基因中,30%在胎儿大脑中也表现出DS-DM,表明这些表观遗传变化的早期发生,并且我们发现唐氏综合征患者大脑和淋巴细胞中的甲基化模式提前成熟。部分(而非全部)具有DS-DM的基因表现出差异表达。DS-DM优先影响特定转录因子结合位点(TFBS)内或附近的CpG,提示存在一种涉及TFBS占据改变的机制。对模拟唐氏综合征的亚染色体重复小鼠模型的脑DNA进行甲基化测序,揭示了与人类DS-DM部分但显著的重叠,并表明多个21号染色体基因对下游表观遗传效应有贡献。
这些数据揭示了唐氏综合征中的新生物学机制,并对染色体重复和非整倍体对表观遗传模式的反式效应具有普遍意义。