文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

短命的人脐带血源性神经干细胞影响内源性分泌组并增加腔隙性脑卒大鼠模型中内源性神经祖细胞的数量。

Short-Lived Human Umbilical Cord-Blood-Derived Neural Stem Cells Influence the Endogenous Secretome and Increase the Number of Endogenous Neural Progenitors in a Rat Model of Lacunar Stroke.

作者信息

Jablonska Anna, Drela Katarzyna, Wojcik-Stanaszek Luiza, Janowski Miroslaw, Zalewska Teresa, Lukomska Barbara

机构信息

NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland.

Department of Radiology and Radiological Science, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.

出版信息

Mol Neurobiol. 2016 Nov;53(9):6413-6425. doi: 10.1007/s12035-015-9530-6. Epub 2015 Nov 25.


DOI:10.1007/s12035-015-9530-6
PMID:26607630
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5085993/
Abstract

Stroke is the leading cause of severe disability, and lacunar stroke is related to cognitive decline and hemiparesis. There is no effective treatment for the majority of patients with stroke. Thus, stem cell-based regenerative medicine has drawn a growing body of attention due to the capabilities for trophic factor expression and neurogenesis enhancement. Moreover, it was shown in an experimental autoimmune encephalomyelitis (EAE) model that even short-lived stem cells can be therapeutic, and we have previously observed that phenomenon indirectly. Here, in a rat model of lacunar stroke, we investigated the molecular mechanisms underlying the positive therapeutic effects of short-lived human umbilical cord-blood-derived neural stem cells (HUCB-NSCs) through the distinct measurement of exogenous human and endogenous rat trophic factors. We have also evaluated neurogenesis and metalloproteinase activity as cellular components of therapeutic activity. As expected, we observed an increased proliferation and migration of progenitors, as well as metalloproteinase activity up to 14 days post transplantation. These changes were most prominent at the 7-day time point when we observed 30 % increases in the number of bromodeoxyuridine (BrdU)-positive cells in HUCB-NSC transplanted animals. The expression of human trophic factors was present until 7 days post transplantation, which correlated well with the survival of the human graft. For these 7 days, the level of messenger RNA (mRNA) in the analyzed trophic factors was from 300-fold for CNTF to 10,000-fold for IGF, much higher compared to constitutive expression in HUCB-NSCs in vitro. What is interesting is that there was no increase in the expression of rat trophic factors during the human graft survival, compared to that in non-transplanted animals. However, there was a prolongation of a period of increased trophic expression until 14 days post transplantation, while, in non-transplanted animals, there was a significant drop in rat trophic expression at that time point. We conclude that the positive therapeutic effect of short-lived stem cells may be related to the net increase in the amount of trophic factors (rat + human) until graft death and to the prolonged increase in rat trophic factor expression subsequently.

摘要

中风是导致严重残疾的主要原因,腔隙性中风与认知衰退和偏瘫有关。对于大多数中风患者而言,目前尚无有效的治疗方法。因此,基于干细胞的再生医学因具有表达营养因子和增强神经发生的能力而受到越来越多的关注。此外,在实验性自身免疫性脑脊髓炎(EAE)模型中发现,即使是短期存活的干细胞也具有治疗作用,我们之前也间接观察到了这一现象。在此,我们在腔隙性中风大鼠模型中,通过对外源人源和内源性大鼠营养因子进行不同测量,研究了短期存活的人脐带血源性神经干细胞(HUCB-NSCs)产生积极治疗效果的分子机制。我们还评估了神经发生和金属蛋白酶活性,将其作为治疗活性的细胞组成部分。正如预期的那样,我们观察到祖细胞的增殖和迁移增加,以及移植后14天内金属蛋白酶活性增强。这些变化在第7天时间点最为显著,此时我们观察到HUCB-NSC移植动物中溴脱氧尿苷(BrdU)阳性细胞数量增加了30%。人源营养因子的表达一直持续到移植后7天,这与人类移植物的存活情况密切相关。在这7天里,所分析的营养因子中信使核糖核酸(mRNA)水平从睫状神经营养因子(CNTF)的300倍到胰岛素样生长因子(IGF)的10000倍,与HUCB-NSCs在体外的组成性表达相比要高得多。有趣的是,与未移植动物相比,在人类移植物存活期间大鼠营养因子的表达没有增加。然而,营养因子表达增加的时期延长至移植后14天,而在未移植动物中,此时大鼠营养因子表达显著下降。我们得出结论,短期存活干细胞的积极治疗效果可能与移植物死亡前营养因子(大鼠+人源)总量的净增加以及随后大鼠营养因子表达的延长增加有关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8663/5085993/fa2a2f30f98a/12035_2015_9530_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8663/5085993/a92787a33926/12035_2015_9530_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8663/5085993/2983ca4e1538/12035_2015_9530_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8663/5085993/84bf9ae484a1/12035_2015_9530_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8663/5085993/904ef2163030/12035_2015_9530_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8663/5085993/9711d9a95c58/12035_2015_9530_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8663/5085993/fb47c1178b86/12035_2015_9530_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8663/5085993/8e2fc35eb11e/12035_2015_9530_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8663/5085993/f7dcdd8ff410/12035_2015_9530_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8663/5085993/1dfb2f25b9f8/12035_2015_9530_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8663/5085993/fa2a2f30f98a/12035_2015_9530_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8663/5085993/a92787a33926/12035_2015_9530_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8663/5085993/2983ca4e1538/12035_2015_9530_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8663/5085993/84bf9ae484a1/12035_2015_9530_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8663/5085993/904ef2163030/12035_2015_9530_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8663/5085993/9711d9a95c58/12035_2015_9530_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8663/5085993/fb47c1178b86/12035_2015_9530_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8663/5085993/8e2fc35eb11e/12035_2015_9530_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8663/5085993/f7dcdd8ff410/12035_2015_9530_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8663/5085993/1dfb2f25b9f8/12035_2015_9530_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8663/5085993/fa2a2f30f98a/12035_2015_9530_Fig10_HTML.jpg

相似文献

[1]
Short-Lived Human Umbilical Cord-Blood-Derived Neural Stem Cells Influence the Endogenous Secretome and Increase the Number of Endogenous Neural Progenitors in a Rat Model of Lacunar Stroke.

Mol Neurobiol. 2016-11

[2]
Transplantation of a novel human cord blood-derived neural-like stem cell line in a rat model of cortical infarct.

Stem Cells Dev. 2007-6

[3]
Migratory capabilities of human umbilical cord blood-derived neural stem cells (HUCB-NSC) in vitro.

Acta Neurobiol Exp (Wars). 2011

[4]
Translating G-CSF as an Adjunct Therapy to Stem Cell Transplantation for Stroke.

Transl Stroke Res. 2015-12

[5]
Neuro-peptide treatment with Cerebrolysin improves the survival of neural stem cell grafts in an APP transgenic model of Alzheimer disease.

Stem Cell Res. 2015-7

[6]
Systemic treatment of focal brain injury in the rat by human umbilical cord blood cells being at different level of neural commitment.

Acta Neurobiol Exp (Wars). 2011

[7]
Transplantation of human umbilical cord blood cells mediated beneficial effects on apoptosis, angiogenesis and neuronal survival after hypoxic-ischemic brain injury in rats.

Cell Tissue Res. 2012-4-18

[8]
Effect of matrix metalloproteinases inhibition on the proliferation and differentiation of HUCB-NSCs cultured in the presence of adhesive substrates.

Acta Neurobiol Exp (Wars). 2010

[9]
Biotherapies in stroke.

Rev Neurol (Paris). 2014-12

[10]
Human umbilical cord blood cells transfected with VEGF and L(1)CAM do not differentiate into neurons but transform into vascular endothelial cells and secrete neuro-trophic factors to support neuro-genesis-a novel approach in stem cell therapy.

Neurochem Int. 2008-12

引用本文的文献

[1]
Dynamic changes in BDNF, VEGF, and GDNF after transplanting human protein-based scaffolds with Wharton's Jelly MSCs in a rat brain injury model.

Sci Rep. 2025-7-2

[2]
In vitro and In vivo Studies on Mesenchymal Stem Cells for Ischemic Stroke Therapy: A Scoping Review of The Therapeutic Effect.

Stem Cells Cloning. 2025-5-31

[3]
Characteristics of Parthenogenetic Stem Cells and Their Potential Treatment Strategy for Central Nervous System Diseases.

Neuropsychiatr Dis Treat. 2025-2-3

[4]
Routes and methods of neural stem cells injection in cerebral ischemia.

Ibrain. 2023-8-6

[5]
Transplantation of Human Glial Progenitors to Immunodeficient Neonatal Mice with Amyotrophic Lateral Sclerosis (SOD1/rag2).

Antioxidants (Basel). 2022-5-26

[6]
Intracarotid Transplantation of Skin-Derived Precursor Schwann Cells Promotes Functional Recovery After Acute Ischemic Stroke in Rats.

Front Neurol. 2021-2-4

[7]
New Mechanistic Insights, Novel Treatment Paradigms, and Clinical Progress in Cerebrovascular Diseases.

Front Aging Neurosci. 2021-1-28

[8]
Neural stem cell-derived exosomes facilitate spinal cord functional recovery after injury by promoting angiogenesis.

Exp Biol Med (Maywood). 2020-1-5

[9]
Labeling of human mesenchymal stem cells with different classes of vital stains: robustness and toxicity.

Stem Cell Res Ther. 2019-6-25

[10]
Concise Review: Human-Animal Neurological Chimeras: Humanized Animals or Human Cells in an Animal?

Stem Cells. 2019-1-28

本文引用的文献

[1]
Characterization of Regenerative Phenotype of Unrestricted Somatic Stem Cells (USSC) from Human Umbilical Cord Blood (hUCB) by Functional Secretome Analysis.

Mol Cell Proteomics. 2015-10

[2]
Effect of human umbilical cord blood derived lineage negative stem cells transplanted in amyloid-β induced cognitive impaired mice.

Behav Brain Res. 2015-9-15

[3]
Neuronal cell reconstruction with umbilical cord blood cells in the brain hypoxia-ischemia.

Iran Biomed J. 2015

[4]
Short-, middle- and long-term safety of superparamagnetic iron oxide-labeled allogeneic bone marrow stromal cell transplantation in rat model of lacunar infarction.

Neuropathology. 2015-6

[5]
Human neural precursor cells promote neurologic recovery in a viral model of multiple sclerosis.

Stem Cell Reports. 2014-5-15

[6]
Neural stem cell protects aged rat brain from ischemia-reperfusion injury through neurogenesis and angiogenesis.

J Cereb Blood Flow Metab. 2014-7

[7]
Intracranial transplantation of human adipose-derived stem cells promotes the expression of neurotrophic factors and nerve repair in rats of cerebral ischemia-reperfusion injury.

Int J Clin Exp Pathol. 2013-12-15

[8]
A multi-modality platform to image stem cell graft survival in the naïve and stroke-damaged mouse brain.

Biomaterials. 2013-12-17

[9]
Identification of MMP-2 as a novel enhancer of cerebellar granule cell proliferation.

Mol Cell Neurosci. 2013-10-17

[10]
Bone marrow stromal cell transplantation enhances recovery of motor function after lacunar stroke in rats.

Acta Neurobiol Exp (Wars). 2013

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索