Kwong Jason C, Mercoulia Karolina, Tomita Takehiro, Easton Marion, Li Hua Y, Bulach Dieter M, Stinear Timothy P, Seemann Torsten, Howden Benjamin P
Doherty Applied Microbial Genomics, Department of Microbiology and Immunology, University of Melbourne at the Doherty Institute for Infection & Immunity, Melbourne, Victoria, Australia Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, University of Melbourne at the Doherty Institute for Infection & Immunity, Melbourne, Victoria, Australia Infectious Diseases Department, Austin Health, Heidelberg, Victoria, Australia.
Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, University of Melbourne at the Doherty Institute for Infection & Immunity, Melbourne, Victoria, Australia.
J Clin Microbiol. 2016 Feb;54(2):333-42. doi: 10.1128/JCM.02344-15. Epub 2015 Nov 25.
Whole-genome sequencing (WGS) has emerged as a powerful tool for comparing bacterial isolates in outbreak detection and investigation. Here we demonstrate that WGS performed prospectively for national epidemiologic surveillance of Listeria monocytogenes has the capacity to be superior to our current approaches using pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), multilocus variable-number tandem-repeat analysis (MLVA), binary typing, and serotyping. Initially 423 L. monocytogenes isolates underwent WGS, and comparisons uncovered a diverse genetic population structure derived from three distinct lineages. MLST, binary typing, and serotyping results inferred in silico from the WGS data were highly concordant (>99%) with laboratory typing performed in parallel. However, WGS was able to identify distinct nested clusters within groups of isolates that were otherwise indistinguishable using our current typing methods. Routine WGS was then used for prospective epidemiologic surveillance on a further 97 L. monocytogenes isolates over a 12-month period, which provided a greater level of discrimination than that of conventional typing for inferring linkage to point source outbreaks. A risk-based alert system based on WGS similarity was used to inform epidemiologists required to act on the data. Our experience shows that WGS can be adopted for prospective L. monocytogenes surveillance and investigated for other pathogens relevant to public health.
全基因组测序(WGS)已成为在疫情检测和调查中比较细菌分离株的有力工具。在此,我们证明,前瞻性地用于单核细胞增生李斯特菌国家流行病学监测的WGS有能力优于我们目前使用脉冲场凝胶电泳(PFGE)、多位点序列分型(MLST)、多位点可变数目串联重复分析(MLVA)、二元分型和血清分型的方法。最初对423株单核细胞增生李斯特菌分离株进行了WGS,比较发现了一个源自三个不同谱系的多样遗传种群结构。从WGS数据中通过计算机推断得出的MLST、二元分型和血清分型结果与并行进行的实验室分型高度一致(>99%)。然而,WGS能够识别在使用我们目前的分型方法无法区分的分离株组内的不同嵌套簇。随后,在12个月的时间里,对另外97株单核细胞增生李斯特菌分离株进行了常规WGS前瞻性流行病学监测,与传统分型相比,它在推断与点源疫情的关联方面提供了更高的区分度。基于WGS相似性的风险预警系统被用于通知需要根据数据采取行动的流行病学家。我们的经验表明,WGS可用于单核细胞增生李斯特菌的前瞻性监测,并可用于对其他与公共卫生相关的病原体进行研究。