Suppr超能文献

对多水平设计推断结果进行异质性建模的影响。

Effects of Modeling the Heterogeneity on Inferences Drawn from Multilevel Designs.

作者信息

Vallejo Guillermo, Fernández Paula, Cuesta Marcelino, Livacic-Rojas Pablo E

机构信息

a University of Oviedo.

b University of Santiago.

出版信息

Multivariate Behav Res. 2015;50(1):75-90. doi: 10.1080/00273171.2014.955604.

Abstract

This article uses Monte Carlo techniques to examine the effect of heterogeneity of variance in multilevel analyses in terms of relative bias, coverage probability, and root mean square error (RMSE). For all simulated data sets, the parameters were estimated using the restricted maximum-likelihood (REML) method both assuming homogeneity and incorporating heterogeneity into multilevel models. We find that (a) the estimates for the fixed parameters are unbiased, but the associated standard errors are frequently biased when heterogeneity is ignored; by contrast, the standard errors of the fixed effects are almost always accurate when heterogeneity is considered; (b) the estimates for the random parameters are slightly overestimated; (c) both the homogeneous and heterogeneous models produce standard errors of the variance component estimates that are underestimated; however, taking heterogeneity into account, the REML-estimations give correct estimates of the standard errors at the lowest level and lead to less underestimated standard errors at the highest level; and (d) from the RMSE point of view, REML accounting for heterogeneity outperforms REML assuming homogeneity; a considerable improvement has been particularly detected for the fixed parameters. Based on this, we conclude that the solution presented can be uniformly adopted. We illustrate the process using a real dataset.

摘要

本文使用蒙特卡罗技术,从相对偏差、覆盖概率和均方根误差(RMSE)方面,研究多水平分析中方差异质性的影响。对于所有模拟数据集,在假设方差齐性以及将异质性纳入多水平模型的情况下,均使用限制最大似然(REML)方法估计参数。我们发现:(a)固定参数的估计是无偏的,但当忽略异质性时,相关的标准误经常有偏;相比之下,考虑异质性时,固定效应的标准误几乎总是准确的;(b)随机参数的估计略有高估;(c)方差成分估计的标准误在同质性和异质性模型中均被低估;然而,考虑异质性时,REML估计在最低水平给出了正确的标准误估计,并且在最高水平导致的标准误低估程度较小;(d)从RMSE的角度来看,考虑异质性的REML优于假设同质性的REML;对于固定参数,尤其发现有相当大的改进。基于此,我们得出结论,所提出的解决方案可以统一采用。我们使用一个真实数据集来说明该过程。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验