Ho Ming-Hsun, De Vivo Marco, Peraro Matteo Dal, Klein Michael L
Center for Molecular Modeling and Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, Department of Drug Discovery and Development, Italian Institute of Technology, Via Morego 30, I-16163 Genova, Italy, and Laboratory for Biomolecular Modeling, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, EPFL, CH-1015 Lausanne, Switzerland.
J Chem Theory Comput. 2009 Jun 9;5(6):1657-66. doi: 10.1021/ct8004722.
The protein farnesyltransferase (FTase) is a Zn(2+)-metalloenzyme that catalyzes the farnesylation reaction, i.e., the transfer of the 15-carbon atom farnesyl group from farnesyl diphosphate (FPP) to a specific cysteine of protein substrates. Oncogenic Ras proteins, which are among the FTase substrates, are observed in about 20-30% of human cancer cells. Thus, FTase represents a target for anticancer drug design. Herein, we present a classical force-field-based and quantum mechanics/molecular mechanics (QM/MM) computational study of the FTase reaction mechanism. Our findings offer a detailed picture of the FTase catalytic pathway, describing structural features and the energetics of its saddle points. A moderate dissociation of the diphosphate group from the FPP is observed during the nucleophilic attack of the zinc-bound thiolate. At the transition state, a resonance structure is observed, which indicates the formation of a metastable carbocation. However, no stable intermediate is found along the reaction pathway. Thus, the reaction occurs via an associative mechanism with dissociative character, in agreement with the mechanism proposed by Fierke et al. ( Biochemistry 2000, 39, 2593-2602 and Biochemistry 2003, 42, 9741-9748 ). Moreover, a fluorine-substituted FPP analogue (CF3-FPP) is used to investigate the inhibitory effect of fluorine, which in turn provides additional agreement with experimental data.
蛋白质法尼基转移酶(FTase)是一种锌(2+)金属酶,催化法尼基化反应,即将15个碳原子的法尼基基团从法尼基二磷酸(FPP)转移到蛋白质底物的特定半胱氨酸上。在FTase底物中,致癌性Ras蛋白在约20%-30%的人类癌细胞中被观察到。因此,FTase是抗癌药物设计的一个靶点。在此,我们展示了基于经典力场和量子力学/分子力学(QM/MM)对FTase反应机制的计算研究。我们的研究结果提供了FTase催化途径的详细图景,描述了其鞍点的结构特征和能量学。在锌结合硫醇盐的亲核攻击过程中,观察到二磷酸基团与FPP适度解离。在过渡态,观察到一种共振结构,这表明形成了亚稳碳正离子。然而,在反应途径中未发现稳定的中间体。因此,该反应通过具有解离特征的缔合机制发生,这与Fierke等人提出的机制一致(《生物化学》2000年,39卷,2593-2602页和《生物化学》2003年,42卷,9741-9748页)。此外,使用氟取代的FPP类似物(CF3-FPP)来研究氟的抑制作用,这反过来又与实验数据提供了额外的一致性。