Suppr超能文献

底物动力学在蛋白质异戊二烯化反应中的作用。

Role of substrate dynamics in protein prenylation reactions.

作者信息

Chakravorty Dhruva K, Merz Kenneth M

机构信息

Department of Chemistry, 2000 Lakeshore Drive, University of New Orleans , New Orleans, Louisiana 70148, United States.

出版信息

Acc Chem Res. 2015 Feb 17;48(2):439-48. doi: 10.1021/ar500321u. Epub 2014 Dec 24.

Abstract

CONSPECTUS

The role dynamics plays in proteins is of intense contemporary interest. Fundamental insights into how dynamics affects reactivity and product distributions will facilitate the design of novel catalysts that can produce high quality compounds that can be employed, for example, as fuels and life saving drugs. We have used molecular dynamics (MD) methods and combined quantum mechanical/molecular mechanical (QM/MM) methods to study a series of proteins either whose substrates are too far away from the catalytic center or whose experimentally resolved substrate binding modes cannot explain the observed product distribution. In particular, we describe studies of farnesyl transferase (FTase) where the farnesyl pyrophosphate (FPP) substrate is ∼8 Å from the zinc-bound peptide in the active site of FTase. Using MD and QM/MM studies, we explain how the FPP substrate spans the gulf between it and the active site, and we have elucidated the nature of the transition state (TS) and offered an alternate explanation of experimentally observed kinetic isotope effects (KIEs). Our second story focuses on the nature of substrate dynamics in the aromatic prenyltransferase (APTase) protein NphB and how substrate dynamics affects the observed product distribution. Through the examples chosen we show the power of MD and QM/MM methods to provide unique insights into how protein substrate dynamics affects catalytic efficiency. We also illustrate how complex these reactions are and highlight the challenges faced when attempting to design de novo catalysts. While the methods used in our previous studies provided useful insights, several clear challenges still remain. In particular, we have utilized a semiempirical QM model (self-consistent charge density functional tight binding, SCC-DFTB) in our QM/MM studies since the problems we were addressing required extensive sampling. For the problems illustrated, this approach performed admirably (we estimate for these systems an uncertainty of ∼2 kcal/mol), but it is still a semiempirical model, and studies of this type would benefit greatly from more accurate ab initio or DFT models. However, the challenge with these methods is to reach the level of sampling needed to study systems where large conformational changes happen in the many nanoseconds to microsecond time regimes. Hence, how to couple expensive and accurate QM methods with sophisticated sampling algorithms is an important future challenge especially when large-scale studies of catalyst design become of interest. The use of MD and QM/MM models to elucidate enzyme catalytic pathways and to design novel catalytic agents is in its infancy but shows tremendous promise. While this Account summarizes where we have been, we also discuss briefly future directions that improve our fundamental ability to understand enzyme catalysis.

摘要

综述

动力学在蛋白质中所起的作用是当前备受关注的热点。深入了解动力学如何影响反应活性和产物分布,将有助于设计新型催化剂,从而生产出高质量的化合物,例如用作燃料和救命药物。我们运用分子动力学(MD)方法以及量子力学/分子力学(QM/MM)相结合的方法,研究了一系列蛋白质,这些蛋白质要么其底物距离催化中心过远,要么其实验解析的底物结合模式无法解释所观察到的产物分布。具体而言,我们描述了对法尼基转移酶(FTase)的研究,在该酶中,法尼基焦磷酸(FPP)底物距离FTase活性位点中与锌结合的肽约8埃。通过MD和QM/MM研究,我们解释了FPP底物如何跨越其自身与活性位点之间的间隔,并且阐明了过渡态(TS)的性质,还对实验观察到的动力学同位素效应(KIEs)提供了另一种解释。我们的第二个实例聚焦于芳香族异戊二烯基转移酶(APTase)蛋白NphB中底物动力学的性质,以及底物动力学如何影响所观察到的产物分布。通过所选取的实例,我们展示了MD和QM/MM方法在揭示蛋白质底物动力学如何影响催化效率方面的强大作用。我们还说明了这些反应是多么复杂,并强调了在尝试从头设计催化剂时所面临的挑战。虽然我们之前研究中使用的方法提供了有用的见解,但仍存在一些明显的挑战。特别是,我们在QM/MM研究中使用了半经验QM模型(自洽电荷密度泛函紧束缚,SCC-DFTB),因为我们所处理的问题需要广泛的采样。对于所阐述的问题,这种方法表现出色(我们估计这些体系的不确定性约为2千卡/摩尔),但它仍然是一个半经验模型,此类研究将极大地受益于更精确的从头算或DFT模型。然而,这些方法面临的挑战是要达到研究在数纳秒到微秒时间范围内发生大构象变化的体系所需的采样水平。因此,如何将昂贵且精确的QM方法与复杂的采样算法相结合,是未来一个重要的挑战,尤其是当对催化剂设计进行大规模研究变得有意义的时候。使用MD和QM/MM模型来阐明酶催化途径并设计新型催化剂尚处于起步阶段,但显示出巨大的潜力。虽然本综述总结了我们已取得的进展,但我们也简要讨论了未来的方向,以提高我们理解酶催化的基本能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c23/4334255/2eb0e0ddae64/ar-2014-00321u_0009.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验