Suppr超能文献

成人隐匿性自身免疫性糖尿病中免疫、代谢和遗传特征的聚类分析:主成分分析证据

Clustering of immunological, metabolic and genetic features in latent autoimmune diabetes in adults: evidence from principal component analysis.

作者信息

Pes Giovanni Mario, Delitala Alessandro Palmerio, Errigo Alessandra, Delitala Giuseppe, Dore Maria Pina

机构信息

Dipartimento di Medicina Clinica e Sperimentale, University of Sassari, Viale San Pietro 8, 07100, Sassari, Italy.

出版信息

Intern Emerg Med. 2016 Jun;11(4):561-7. doi: 10.1007/s11739-015-1352-z. Epub 2015 Nov 26.

Abstract

Latent autoimmune diabetes in adults (LADA) which accounts for more than 10 % of all cases of diabetes is characterized by onset after age 30, absence of ketoacidosis, insulin independence for at least 6 months, and presence of circulating islet-cell antibodies. Its marked heterogeneity in clinical features and immunological markers suggests the existence of multiple mechanisms underlying its pathogenesis. The principal component (PC) analysis is a statistical approach used for finding patterns in data of high dimension. In this study the PC analysis was applied to a set of variables from a cohort of Sardinian LADA patients to identify a smaller number of latent patterns. A list of 11 variables including clinical (gender, BMI, lipid profile, systolic and diastolic blood pressure and insulin-free time period), immunological (anti-GAD65, anti-IA-2 and anti-TPO antibody titers) and genetic features (predisposing gene variants previously identified as risk factors for autoimmune diabetes) retrieved from clinical records of 238 LADA patients referred to the Internal Medicine Unit of University of Sassari, Italy, were analyzed by PC analysis. The predictive value of each PC on the further development of insulin dependence was evaluated using Kaplan-Meier curves. Overall 4 clusters were identified by PC analysis. In component PC-1, the dominant variables were: BMI, triglycerides, systolic and diastolic blood pressure and duration of insulin-free time period; in PC-2: genetic variables such as Class II HLA, CTLA-4 as well as anti-GAD65, anti-IA-2 and anti-TPO antibody titers, and the insulin-free time period predominated; in PC-3: gender and triglycerides; and in PC-4: total cholesterol. These components explained 18, 15, 12, and 12 %, respectively, of the total variance in the LADA cohort. The predictive power of insulin dependence of the four components was different. PC-2 (characterized mostly by high antibody titers and presence of predisposing genetic markers) showed a faster beta-cells failure and PC-3 (characterized mostly by gender and high triglycerides) and PC-4 (high cholesterol) showed a slower beta-cells failure. PC-1 (including dislipidemia and other metabolic dysfunctions), showed a mild beta-cells failure. In conclusion variable clustering might be consistent with different pathogenic pathways and/or distinct immune mechanisms in LADA and could potentially help physicians improve the clinical management of these patients.

摘要

成人隐匿性自身免疫性糖尿病(LADA)占所有糖尿病病例的10%以上,其特征为30岁后发病、无酮症酸中毒、至少6个月不依赖胰岛素以及存在循环胰岛细胞抗体。其临床特征和免疫标志物的显著异质性表明其发病机制存在多种潜在机制。主成分(PC)分析是一种用于在高维数据中寻找模式的统计方法。在本研究中,PC分析应用于一组撒丁岛LADA患者的数据变量,以识别数量较少的潜在模式。从意大利萨萨里大学内科收治的238例LADA患者的临床记录中获取了一份包含11个变量的列表,这些变量包括临床变量(性别、体重指数、血脂谱、收缩压和舒张压以及无胰岛素期)、免疫变量(抗GAD65、抗IA-2和抗TPO抗体滴度)和遗传特征(先前被确定为自身免疫性糖尿病危险因素的易感基因变异),并通过PC分析进行了分析。使用Kaplan-Meier曲线评估每个主成分对胰岛素依赖进一步发展的预测价值。通过PC分析共识别出4个聚类。在主成分PC-1中,主要变量为:体重指数、甘油三酯、收缩压和舒张压以及无胰岛素期的持续时间;在PC-2中:遗传变量如II类HLA、CTLA-4以及抗GAD65、抗IA-2和抗TPO抗体滴度,且无胰岛素期占主导;在PC-3中:性别和甘油三酯;在PC-4中:总胆固醇。这些成分分别解释了LADA队列总方差的18%、15%、12%和12%。这四个成分对胰岛素依赖的预测能力各不相同。PC-2(主要特征为高抗体滴度和存在易感遗传标志物)显示β细胞衰竭更快,PC-3(主要特征为性别和高甘油三酯)和PC-4(高胆固醇)显示β细胞衰竭较慢。PC-1(包括血脂异常和其他代谢功能障碍)显示轻度β细胞衰竭。总之,变量聚类可能与LADA中不同的致病途径和/或不同的免疫机制一致,并可能有助于医生改善对这些患者的临床管理。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验