Suppr超能文献

一种针对大分子复合物的AM1方法的新经验校正。

A New Empirical Correction to the AM1 Method for Macromolecular Complexes.

作者信息

Foster Michael E, Sohlberg Karl

机构信息

Department of Chemistry, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104.

出版信息

J Chem Theory Comput. 2010 Jul 13;6(7):2153-66. doi: 10.1021/ct100177u.

Abstract

Modeling systems that are governed by van der Waals (dispersion) interactions using empirically corrected DFT methods is becoming increasingly popular due to the promise of a CCSD(T) level accuracy at the computational cost of DFT. Although, DFT methods are computationally efficient in comparison to the CCSD(T) method, currently, structural optimizations using DFT methods are generally only feasible for systems of less than a few hundred atoms. We seek a method applicable to macromolecular complexes. In order to model such large systems, empirically corrected semiempirical methods appear to be an attractive alternative. As with most common DFT methods, the popular semiempirical methods (e.g., AM1) also do not model long-range dispersion (and therefore an empirical correction term is desirable), but this is not their only shortcoming. For weakly interacting systems, hydrogen bonding also poses a concern. A new empirically corrected AM1 method that uses two empirical correction terms, one for dispersion and one for hydrogen bonding interactions, is presented and termed AM1-FS1. This new empirically corrected AM1 method has been parametrized to a diverse training set of 66 complexes that includes nonequilibrium structures and yields sub-kilocalorie accuracy in the prediction of intermolecular interaction energies. More significantly, AM1-FS1 achieves this result with substantially less parametrization than existing empirically corrected semiempirical methods and without modification of the original AM1 parameters so that it retains both the computational efficiency and predictive power for thermo-chemical quantities of the original AM1 Hamiltonian. The performance of AM1-FS1 is also tested on several carbon nanostructure complexes and pseudorotaxanes and is found to produce results in very good agreement with the best first-principles calculations.

摘要

使用经验校正密度泛函理论(DFT)方法来模拟由范德华(色散)相互作用主导的系统正变得越来越流行,因为有望以DFT的计算成本达到耦合簇单双激发(CCSD(T))水平的精度。尽管与CCSD(T)方法相比,DFT方法计算效率高,但目前使用DFT方法进行结构优化通常仅适用于几百个原子以下的系统。我们寻求一种适用于大分子复合物的方法。为了模拟如此大的系统,经验校正半经验方法似乎是一个有吸引力的选择。与大多数常见的DFT方法一样,流行的半经验方法(例如AM1)也无法模拟长程色散(因此需要一个经验校正项),但这不是它们唯一的缺点。对于弱相互作用系统,氢键也令人担忧。本文提出了一种新的经验校正AM1方法,该方法使用两个经验校正项,一个用于色散,一个用于氢键相互作用,称为AM1-FS1。这种新的经验校正AM1方法已针对包含非平衡结构的66种复合物的多样化训练集进行了参数化,并且在预测分子间相互作用能时产生了亚千卡的精度。更重要的是,与现有的经验校正半经验方法相比,AM1-FS1在参数化少得多的情况下实现了这一结果,并且无需修改原始AM1参数,从而保留了原始AM1哈密顿量对热化学量的计算效率和预测能力。AM1-FS1的性能也在几种碳纳米结构复合物和准轮烷上进行了测试,发现其结果与最佳的第一性原理计算结果非常吻合。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验