Organisch-Chemisches Institut, Universität Münster, Münster, Germany.
J Phys Chem A. 2011 Oct 20;115(41):11210-20. doi: 10.1021/jp203963f. Epub 2011 Aug 15.
With dispersion-corrected density functional theory (DFT-D3) intermolecular interaction energies for a diverse set of noncovalently bound protein-ligand complexes from the Protein Data Bank are calculated. The focus is on major contacts occurring between the drug molecule and the binding site. Generalized gradient approximation (GGA), meta-GGA, and hybrid functionals are used. DFT-D3 interaction energies are benchmarked against the best available wave function based results that are provided by the estimated complete basis set (CBS) limit of the local pair natural orbital coupled-electron pair approximation (LPNO-CEPA/1) and compared to MP2 and semiempirical data. The size of the complexes and their interaction energies (ΔE(PL)) varies between 50 and 300 atoms and from -1 to -65 kcal/mol, respectively. Basis set effects are considered by applying extended sets of triple- to quadruple-ζ quality. Computed total ΔE(PL) values show a good correlation with the dispersion contribution despite the fact that the protein-ligand complexes contain many hydrogen bonds. It is concluded that an adequate, for example, asymptotically correct, treatment of dispersion interactions is necessary for the realistic modeling of protein-ligand binding. Inclusion of the dispersion correction drastically reduces the dependence of the computed interaction energies on the density functional compared to uncorrected DFT results. DFT-D3 methods provide results that are consistent with LPNO-CEPA/1 and MP2, the differences of about 1-2 kcal/mol on average (<5% of ΔE(PL)) being on the order of their accuracy, while dispersion-corrected semiempirical AM1 and PM3 approaches show a deviating behavior. The DFT-D3 results are found to depend insignificantly on the choice of the short-range damping model. We propose to use DFT-D3 as an essential ingredient in a QM/MM approach for advanced virtual screening approaches of protein-ligand interactions to be combined with similarly "first-principle" accounts for the estimation of solvation and entropic effects.
用修正后的密度泛函理论(DFT-D3)计算了来自蛋白质数据库的一组不同的非共价结合的蛋白质-配体复合物的分子间相互作用能。重点是发生在药物分子和结合部位之间的主要接触。使用广义梯度近似(GGA)、meta-GGA 和杂化泛函。DFT-D3 相互作用能与提供估计完全基组(CBS)极限的局部对自然轨道耦合电子对近似(LPNO-CEPA/1)的最佳可用波函数结果进行基准测试,并与 MP2 和半经验数据进行比较。复合物的大小及其相互作用能(ΔE(PL))分别在 50 到 300 个原子之间和-1 到-65 kcal/mol 之间变化。通过应用扩展的三重到四重ζ质量基组考虑基组效应。尽管蛋白质-配体复合物含有许多氢键,但计算出的总ΔE(PL)值与色散贡献有很好的相关性。结论是,对于蛋白质-配体结合的实际建模,需要对色散相互作用进行适当的、例如渐近正确的处理。与未修正的 DFT 结果相比,包含色散校正会大大降低计算相互作用能对密度泛函的依赖性。DFT-D3 方法提供的结果与 LPNO-CEPA/1 和 MP2 一致,平均差异约为 1-2 kcal/mol(ΔE(PL)的<5%),处于其精度范围内,而修正后的半经验 AM1 和 PM3 方法则表现出偏离行为。DFT-D3 结果发现与短程阻尼模型的选择无关紧要。我们建议将 DFT-D3 用作 QM/MM 方法的基本成分,用于与类似的“第一原理”方法结合,以估计溶剂化和熵效应,用于蛋白质-配体相互作用的高级虚拟筛选方法。