Suppr超能文献

基于Al2O3的硅表面钝化方案中固定电荷密度的控制

On the Control of the Fixed Charge Densities in Al2O3-Based Silicon Surface Passivation Schemes.

作者信息

Simon Daniel K, Jordan Paul M, Mikolajick Thomas, Dirnstorfer Ingo

机构信息

NaMLab gGmbH , Nöthnitzer Strasse 64, D-01187 Dresden, Germany.

Chair of Nanoelectronic Materials, TU Dresden , D-01062 Dresden, Germany.

出版信息

ACS Appl Mater Interfaces. 2015 Dec 30;7(51):28215-22. doi: 10.1021/acsami.5b06606. Epub 2015 Dec 16.

Abstract

A controlled field-effect passivation by a well-defined density of fixed charges is crucial for modern solar cell surface passivation schemes. Al2O3 nanolayers grown by atomic layer deposition contain negative fixed charges. Electrical measurements on slant-etched layers reveal that these charges are located within a 1 nm distance to the interface with the Si substrate. When inserting additional interface layers, the fixed charge density can be continuously adjusted from 3.5 × 10(12) cm(-2) (negative polarity) to 0.0 and up to 4.0 × 10(12) cm(-2) (positive polarity). A HfO2 interface layer of one or more monolayers reduces the negative fixed charges in Al2O3 to zero. The role of HfO2 is described as an inert spacer controlling the distance between Al2O3 and the Si substrate. It is suggested that this spacer alters the nonstoichiometric initial Al2O3 growth regime, which is responsible for the charge formation. On the basis of this charge-free HfO2/Al2O3 stack, negative or positive fixed charges can be formed by introducing additional thin Al2O3 or SiO2 layers between the Si substrate and this HfO2/Al2O3 capping layer. All stacks provide very good passivation of the silicon surface. The measured effective carrier lifetimes are between 1 and 30 ms. This charge control in Al2O3 nanolayers allows the construction of zero-fixed-charge passivation layers as well as layers with tailored fixed charge densities for future solar cell concepts and other field-effect based devices.

摘要

通过定义明确的固定电荷密度实现可控的场效应钝化对于现代太阳能电池表面钝化方案至关重要。通过原子层沉积生长的Al2O3纳米层含有负固定电荷。对倾斜蚀刻层的电学测量表明,这些电荷位于距与Si衬底界面1nm的距离内。插入额外的界面层时,固定电荷密度可从3.5×10(12) cm(-2)(负极性)连续调节至0.0,再到4.0×10(12) cm(-2)(正极性)。一层或多层的HfO2界面层可将Al2O3中的负固定电荷减少至零。HfO2的作用被描述为控制Al2O3与Si衬底之间距离的惰性间隔层。据推测,该间隔层改变了非化学计量比的初始Al2O3生长模式,而这种模式是电荷形成的原因。基于这种无电荷的HfO2/Al2O3堆叠结构,通过在Si衬底与该HfO2/Al2O3覆盖层之间引入额外的薄Al2O3或SiO2层,可以形成负或正的固定电荷。所有堆叠结构都能对硅表面提供非常好的钝化效果。测得的有效载流子寿命在1至30ms之间。Al2O3纳米层中的这种电荷控制使得能够构建零固定电荷钝化层以及具有定制固定电荷密度的层,以用于未来的太阳能电池概念及其他基于场效应的器件。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验