Suppr超能文献

利用计算机视觉系统预测猪肉颜色属性。

Prediction of pork color attributes using computer vision system.

机构信息

Department of Animal Sciences, North Dakota State University, Fargo, ND 58102, USA; Department of Engineering, Nanjing Agricultural University, Nanjing 210031, China.

Department of Animal Sciences, North Dakota State University, Fargo, ND 58102, USA.

出版信息

Meat Sci. 2016 Mar;113:62-4. doi: 10.1016/j.meatsci.2015.11.009. Epub 2015 Nov 10.

Abstract

Color image processing and regression methods were utilized to evaluate color score of pork center cut loin samples. One hundred loin samples of subjective color scores 1 to 5 (NPB, 2011; n=20 for each color score) were selected to determine correlation values between Minolta colorimeter measurements and image processing features. Eighteen image color features were extracted from three different RGB (red, green, blue) model, HSI (hue, saturation, intensity) and Lab* color spaces. When comparing Minolta colorimeter values with those obtained from image processing, correlations were significant (P<0.0001) for L* (0.91), a* (0.80), and b* (0.66). Two comparable regression models (linear and stepwise) were used to evaluate prediction results of pork color attributes. The proposed linear regression model had a coefficient of determination (R(2)) of 0.83 compared to the stepwise regression results (R(2)=0.70). These results indicate that computer vision methods have potential to be used as a tool in predicting pork color attributes.

摘要

采用彩色图像处理和回归方法来评估猪肉中心肉片样品的颜色得分。选择了 100 个主观颜色得分 1 到 5(NPB,2011;每个颜色得分 20 个样本)的肉片样本,以确定分光光度计测量值与图像处理特征之间的相关值。从三个不同的 RGB(红、绿、蓝)模型、HSI(色调、饱和度、强度)和 Lab颜色空间中提取了 18 个图像颜色特征。当将分光光度计值与图像处理值进行比较时,L(0.91)、a*(0.80)和 b*(0.66)的相关性非常显著(P<0.0001)。使用了两种可比的回归模型(线性和逐步)来评估猪肉颜色属性的预测结果。所提出的线性回归模型的确定系数(R(2))为 0.83,而逐步回归结果为 0.70。这些结果表明,计算机视觉方法有可能成为预测猪肉颜色属性的工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验