Departamento de Química Física y Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, 47005 Valladolid, Spain, Center for Biomolecules and Complex Molecular Systems, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 16610 Prague 6, Czech Republic, and Departamento de Química Física y Analítica, Facultad de Química, Universidad de Oviedo, 33007 Oviedo, Spain.
J Chem Theory Comput. 2008 Feb;4(2):243-56. doi: 10.1021/ct700229e.
A systematic theoretical study on several models of Zn(II) complexes has been carried out employing both ab initio correlated wave function and density functional methods. The performance of five different functionals namely PW91, PBE, B3LYP, MPWLYP1M, and TPSS in the prediction of metal-ligand bond distances, binding energies, and proton affinities has been assessed comparing the results to those obtained with the MP2 and CCSD(T) wave function methodologies. Several basis sets ranging from double-ζ up to quintuple-ζ quality have been used, including the recently developed all-electron correlation consistent basis sets for zinc. It is shown that all the tested functionals overestimate both the metal-ligand bond distances and the binding energies, being that the B3LYP and TPSS functionals are the ones that perform the best. An analysis of the metal-ligand interaction energy shows that induction and charge-transfer effects play a prominent role in the bonding of these systems, even for those complexes with the less polarizable ligands. This finding highlights the importance of a correct description of the polarization of the monomers' charge densities by any theoretical method which aims to be applied to the study of Zn(II) complexes.
采用从头算相关波函数和密度泛函方法,对几种 Zn(II) 配合物模型进行了系统的理论研究。评估了五种不同泛函(PW91、PBE、B3LYP、MPWLYP1M 和 TPSS)在预测金属-配体键距、结合能和质子亲和力方面的性能,将结果与 MP2 和 CCSD(T) 波函数方法的结果进行了比较。使用了从双 ζ 到五重 ζ 质量的多种基组,包括最近开发的用于锌的全电子相关一致基组。结果表明,所有测试的泛函都高估了金属-配体键距和结合能,其中 B3LYP 和 TPSS 泛函的性能最佳。对金属-配体相互作用能的分析表明,诱导和电荷转移效应在这些体系的成键中起着重要作用,即使对于那些具有较小极化率配体的配合物也是如此。这一发现强调了任何旨在应用于 Zn(II) 配合物研究的理论方法正确描述单体电荷密度极化的重要性。