Suppr超能文献

PC-TraFF:使用点互信息识别潜在协作转录因子。

PC-TraFF: identification of potentially collaborating transcription factors using pointwise mutual information.

作者信息

Meckbach Cornelia, Tacke Rebecca, Hua Xu, Waack Stephan, Wingender Edgar, Gültas Mehmet

机构信息

Institute of Bioinformatics, University of Göttingen, Goldschmidtstr. 1, Göttingen, 37077, Germany.

Institute of Computer Science, University of Göttingen, Goldschmidtstr. 7, Göttingen, 37077, Germany.

出版信息

BMC Bioinformatics. 2015 Dec 1;16:400. doi: 10.1186/s12859-015-0827-2.

Abstract

BACKGROUND

Transcription factors (TFs) are important regulatory proteins that govern transcriptional regulation. Today, it is known that in higher organisms different TFs have to cooperate rather than acting individually in order to control complex genetic programs. The identification of these interactions is an important challenge for understanding the molecular mechanisms of regulating biological processes. In this study, we present a new method based on pointwise mutual information, PC-TraFF, which considers the genome as a document, the sequences as sentences, and TF binding sites (TFBSs) as words to identify interacting TFs in a set of sequences.

RESULTS

To demonstrate the effectiveness of PC-TraFF, we performed a genome-wide analysis and a breast cancer-associated sequence set analysis for protein coding and miRNA genes. Our results show that in any of these sequence sets, PC-TraFF is able to identify important interacting TF pairs, for most of which we found support by previously published experimental results. Further, we made a pairwise comparison between PC-TraFF and three conventional methods. The outcome of this comparison study strongly suggests that all these methods focus on different important aspects of interaction between TFs and thus the pairwise overlap between any of them is only marginal.

CONCLUSIONS

In this study, adopting the idea from the field of linguistics in the field of bioinformatics, we develop a new information theoretic method, PC-TraFF, for the identification of potentially collaborating transcription factors based on the idiosyncrasy of their binding site distributions on the genome. The results of our study show that PC-TraFF can succesfully identify known interacting TF pairs and thus its currently biologically uncorfirmed predictions could provide new hypotheses for further experimental validation. Additionally, the comparison of the results of PC-TraFF with the results of previous methods demonstrates that different methods with their specific scopes can perfectly supplement each other. Overall, our analyses indicate that PC-TraFF is a time-efficient method where its algorithm has a tractable computational time and memory consumption. The PC-TraFF server is freely accessible at http://pctraff.bioinf.med.uni-goettingen.de/.

摘要

背景

转录因子(TFs)是调控转录过程的重要调节蛋白。如今已知,在高等生物中,不同的转录因子必须协同作用而非单独发挥作用,才能控制复杂的遗传程序。识别这些相互作用对于理解调控生物过程的分子机制而言是一项重大挑战。在本研究中,我们提出了一种基于点互信息的新方法——PC-TraFF,该方法将基因组视为一份文档,序列视为句子,转录因子结合位点(TFBSs)视为单词,以在一组序列中识别相互作用的转录因子。

结果

为证明PC-TraFF的有效性,我们对蛋白质编码基因和miRNA基因进行了全基因组分析以及乳腺癌相关序列集分析。我们的结果表明,在这些序列集中的任何一个中,PC-TraFF都能够识别重要的相互作用转录因子对,其中大多数我们都能从先前发表的实验结果中找到支持。此外,我们对PC-TraFF与三种传统方法进行了两两比较。这项比较研究的结果有力地表明,所有这些方法都聚焦于转录因子之间相互作用的不同重要方面,因此它们之间的两两重叠仅处于边缘水平。

结论

在本研究中,我们借鉴生物信息学领域中语言学的思想,开发了一种新的信息论方法——PC-TraFF,用于基于转录因子在基因组上结合位点分布的特性来识别潜在协同作用的转录因子。我们的研究结果表明,PC-TraFF能够成功识别已知的相互作用转录因子对,因此其目前未经生物学证实的预测可为进一步的实验验证提供新的假设。此外,将PC-TraFF的结果与先前方法的结果进行比较表明,具有特定范围的不同方法可以完美地相互补充。总体而言,我们的分析表明PC-TraFF是一种时间高效的方法,其算法具有易于处理的计算时间和内存消耗。可通过http://pctraff.bioinf.med.uni-goettingen.de/免费访问PC-TraFF服务器。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e959/4667426/73b84f8c6832/12859_2015_827_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验