Suppr超能文献

由于突触小泡释放的随机性而导致的信号增强。

Improved signaling as a result of randomness in synaptic vesicle release.

作者信息

Zhang Calvin, Peskin Charles S

机构信息

Courant Institute of Mathematical Sciences, New York, NY 10012

Courant Institute of Mathematical Sciences, New York, NY 10012.

出版信息

Proc Natl Acad Sci U S A. 2015 Dec 1;112(48):14954-9. doi: 10.1073/pnas.1513160112. Epub 2015 Nov 16.

Abstract

The probabilistic nature of neurotransmitter release in synapses is believed to be one of the most significant sources of noise in the central nervous system. We show how p0, the probability of release per docked vesicle when an action potential arrives, affects the dynamics of the rate of vesicle release in response to changes in the rate of arrival of action potentials. Furthermore, we examine the theoretical capability of a synapse in the estimation of desired signals using information from the stochastic vesicle release events under the framework of optimal linear filter theory. We find that a small p0, such as 0.1, reduces the error in the reconstruction of the input, or in the reconstruction of the time derivative of the input, from the time series of vesicle release events. Our results imply that the probabilistic nature of synaptic vesicle release plays a direct functional role in synaptic transmission.

摘要

突触中神经递质释放的概率特性被认为是中枢神经系统中最主要的噪声源之一。我们展示了p0(即动作电位到达时每个停靠囊泡的释放概率)如何响应动作电位到达速率的变化而影响囊泡释放速率的动态变化。此外,我们在最优线性滤波器理论框架下,研究了突触利用随机囊泡释放事件中的信息来估计期望信号的理论能力。我们发现,较小的p0,如0.1,可减少从囊泡释放事件的时间序列中重建输入或输入时间导数时的误差。我们的结果表明,突触囊泡释放的概率特性在突触传递中发挥着直接的功能作用。

相似文献

1
Improved signaling as a result of randomness in synaptic vesicle release.
Proc Natl Acad Sci U S A. 2015 Dec 1;112(48):14954-9. doi: 10.1073/pnas.1513160112. Epub 2015 Nov 16.
2
Enhancement of information transmission efficiency by synaptic failures.
Neural Comput. 2004 Jun;16(6):1137-62. doi: 10.1162/089976604773717568.
3
Short term synaptic depression imposes a frequency dependent filter on synaptic information transfer.
PLoS Comput Biol. 2012;8(6):e1002557. doi: 10.1371/journal.pcbi.1002557. Epub 2012 Jun 21.
4
Multiple vesicle recycling pathways in central synapses and their impact on neurotransmission.
J Physiol. 2007 Dec 15;585(Pt 3):669-79. doi: 10.1113/jphysiol.2007.137745. Epub 2007 Aug 9.
5
Hydrodynamics govern the pre-fusion docking time of synaptic vesicles.
J R Soc Interface. 2018 Jan;15(138). doi: 10.1098/rsif.2017.0818.
6
Control of neural information transmission by synaptic dynamics.
J Theor Biol. 2002 Jan 21;214(2):275-92. doi: 10.1006/jtbi.2001.2462.
7
SNAREs and control of synaptic release probabilities.
FASEB J. 2003 Feb;17(2):130-5. doi: 10.1096/fj.02-0595hyp.
8
Heterogeneous presynaptic release probabilities: functional relevance for short-term plasticity.
Biophys J. 2003 Mar;84(3):1563-79. doi: 10.1016/S0006-3495(03)74967-4.
9
Reluctant vesicles coaxed into the limelight.
Neuron. 2005 May 19;46(4):523-5. doi: 10.1016/j.neuron.2005.05.003.

引用本文的文献

1
Inferring synaptic transmission from the stochastic dynamics of the quantal content: An analytical approach.
PLoS Comput Biol. 2025 May 13;21(5):e1013067. doi: 10.1371/journal.pcbi.1013067. eCollection 2025 May.
2
Exact Distribution of the Quantal Content in Synaptic Transmission.
Phys Rev Lett. 2024 May 31;132(22):228401. doi: 10.1103/PhysRevLett.132.228401.
4
Temporal interference stimulation targets deep brain regions by modulating neural oscillations.
Brain Stimul. 2021 Jan-Feb;14(1):55-65. doi: 10.1016/j.brs.2020.11.007. Epub 2020 Nov 11.
5
Local Design Principles at Hippocampal Synapses Revealed by an Energy-Information Trade-Off.
eNeuro. 2020 Sep 8;7(5). doi: 10.1523/ENEURO.0521-19.2020. Print 2020 Sep/Oct.
6
Estimating the Readily-Releasable Vesicle Pool Size at Synaptic Connections in the Neocortex.
Front Synaptic Neurosci. 2019 Oct 15;11:29. doi: 10.3389/fnsyn.2019.00029. eCollection 2019.
7
Roles for the Endoplasmic Reticulum in Regulation of Neuronal Calcium Homeostasis.
Cells. 2019 Oct 10;8(10):1232. doi: 10.3390/cells8101232.
8
Transmission of temporally correlated spike trains through synapses with short-term depression.
PLoS Comput Biol. 2018 Jun 22;14(6):e1006232. doi: 10.1371/journal.pcbi.1006232. eCollection 2018 Jun.

本文引用的文献

1
Molecular machines governing exocytosis of synaptic vesicles.
Nature. 2012 Oct 11;490(7419):201-7. doi: 10.1038/nature11320.
2
Short term synaptic depression imposes a frequency dependent filter on synaptic information transfer.
PLoS Comput Biol. 2012;8(6):e1002557. doi: 10.1371/journal.pcbi.1002557. Epub 2012 Jun 21.
3
The faithful copy neuron.
J Comput Neurosci. 2012 Jun;32(3):377-85. doi: 10.1007/s10827-011-0356-6. Epub 2012 Jan 11.
5
Development regulates a switch between post- and presynaptic strengthening in response to activity deprivation.
Proc Natl Acad Sci U S A. 2009 Jun 30;106(26):10817-22. doi: 10.1073/pnas.0903603106. Epub 2009 Jun 9.
6
A general model of synaptic transmission and short-term plasticity.
Neuron. 2009 May 28;62(4):539-54. doi: 10.1016/j.neuron.2009.03.025.
8
Detecting and estimating signals over noisy and unreliable synapses: information-theoretic analysis.
Neural Comput. 2001 Jan;13(1):1-33. doi: 10.1162/089976601300014619.
10
Pulse frequency modulation in neural systems. A random model.
Biophys J. 1971 Jan;11(1):98-109. doi: 10.1016/S0006-3495(71)86198-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验