Suppr超能文献

突触传递中量子含量的确切分布。

Exact Distribution of the Quantal Content in Synaptic Transmission.

机构信息

Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.

Animal Physiology Group, Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany.

出版信息

Phys Rev Lett. 2024 May 31;132(22):228401. doi: 10.1103/PhysRevLett.132.228401.

Abstract

During electrochemical signal transmission through synapses, triggered by an action potential (AP), a stochastic number of synaptic vesicles (SVs), called the "quantal content," release neurotransmitters in the synaptic cleft. It is widely accepted that the quantal content probability distribution is a binomial based on the number of ready-release SVs in the presynaptic terminal. But the latter number itself fluctuates due to its stochastic replenishment, hence the actual distribution of quantal content is unknown. We show that exact distribution of quantal content can be derived for general stochastic AP inputs in the steady state. For fixed interval AP train, we prove that the distribution is a binomial, and corroborate our predictions by comparison with electrophysiological recordings from MNTB-LSO synapses of juvenile mice. For a Poisson train, we show that the distribution is nonbinomial. Moreover, we find exact moments of the quantal content in the Poisson and other general cases, which may be used to obtain the model parameters from experiments.

摘要

在动作电位(AP)触发的突触电化学信号传递过程中,称为“量子含量”的随机数量的突触小泡(SV)在突触间隙中释放神经递质。人们普遍认为,基于突触前末端准备释放的 SV 数量,量子含量概率分布是二项式的。但是,由于其随机补充,后一个数量本身会波动,因此实际的量子含量分布是未知的。我们表明,在稳态下,一般的随机 AP 输入可以推导出量子含量的精确分布。对于固定间隔的 AP 训练,我们证明了该分布是二项式的,并通过与幼年小鼠 MNTB-LSO 突触的电生理记录进行比较,验证了我们的预测。对于泊松训练,我们表明该分布不是二项式的。此外,我们还发现了泊松和其他一般情况下的量子含量的精确矩,这可能用于从实验中获得模型参数。

相似文献

1
Exact Distribution of the Quantal Content in Synaptic Transmission.
Phys Rev Lett. 2024 May 31;132(22):228401. doi: 10.1103/PhysRevLett.132.228401.
2
Inferring synaptic transmission from the stochastic dynamics of the quantal content: An analytical approach.
PLoS Comput Biol. 2025 May 13;21(5):e1013067. doi: 10.1371/journal.pcbi.1013067. eCollection 2025 May.
4
Combining principal component and spectral analyses with the method of moments in studies of quantal transmission.
J Neurosci Methods. 2003 Dec 15;130(2):173-99. doi: 10.1016/j.jneumeth.2003.09.022.
5
Estimation of the time course of neurotransmitter release at central synapses from the first latency of postsynaptic currents.
J Neurosci Methods. 2012 Mar 30;205(1):49-64. doi: 10.1016/j.jneumeth.2011.12.015. Epub 2011 Dec 29.
6
Anomalous diffusion of synaptic vesicles and its influences on spontaneous and evoked neurotransmission.
J Physiol. 2024 Jun;602(12):2873-2898. doi: 10.1113/JP284926. Epub 2024 May 9.
7
Synaptic vesicle transporter expression regulates vesicle phenotype and quantal size.
J Neurosci. 2000 Oct 1;20(19):7297-306. doi: 10.1523/JNEUROSCI.20-19-07297.2000.
10
Stochastic modeling of facilitated neurosecretion.
J Comput Neurosci. 2000 Mar-Apr;8(2):113-26. doi: 10.1023/a:1008917130947.

本文引用的文献

1
Efficient sampling-based Bayesian Active Learning for synaptic characterization.
PLoS Comput Biol. 2023 Aug 21;19(8):e1011342. doi: 10.1371/journal.pcbi.1011342. eCollection 2023 Aug.
2
Targeted sensors for glutamatergic neurotransmission.
Elife. 2023 Jan 9;12:e84029. doi: 10.7554/eLife.84029.
3
Vesicular release probability sets the strength of individual Schaffer collateral synapses.
Nat Commun. 2022 Oct 17;13(1):6126. doi: 10.1038/s41467-022-33565-6.
5
The dopamine membrane transporter plays an active modulatory role in synaptic dopamine homeostasis.
J Neurosci Res. 2022 Aug;100(8):1551-1559. doi: 10.1002/jnr.24965. Epub 2021 Nov 8.
6
Glycinergic Transmission in the Presence and Absence of Functional GlyT2: Lessons From the Auditory Brainstem.
Front Synaptic Neurosci. 2021 Feb 9;12:560008. doi: 10.3389/fnsyn.2020.560008. eCollection 2020.
9
Synaptic vesicle fusion is modulated through feedback inhibition by dopamine auto-receptors.
Synapse. 2020 Jan;74(1):e22131. doi: 10.1002/syn.22131. Epub 2019 Sep 23.
10
Model-Based Inference of Synaptic Transmission.
Front Synaptic Neurosci. 2019 Aug 20;11:21. doi: 10.3389/fnsyn.2019.00021. eCollection 2019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验