Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
Animal Physiology Group, Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany.
Phys Rev Lett. 2024 May 31;132(22):228401. doi: 10.1103/PhysRevLett.132.228401.
During electrochemical signal transmission through synapses, triggered by an action potential (AP), a stochastic number of synaptic vesicles (SVs), called the "quantal content," release neurotransmitters in the synaptic cleft. It is widely accepted that the quantal content probability distribution is a binomial based on the number of ready-release SVs in the presynaptic terminal. But the latter number itself fluctuates due to its stochastic replenishment, hence the actual distribution of quantal content is unknown. We show that exact distribution of quantal content can be derived for general stochastic AP inputs in the steady state. For fixed interval AP train, we prove that the distribution is a binomial, and corroborate our predictions by comparison with electrophysiological recordings from MNTB-LSO synapses of juvenile mice. For a Poisson train, we show that the distribution is nonbinomial. Moreover, we find exact moments of the quantal content in the Poisson and other general cases, which may be used to obtain the model parameters from experiments.
在动作电位(AP)触发的突触电化学信号传递过程中,称为“量子含量”的随机数量的突触小泡(SV)在突触间隙中释放神经递质。人们普遍认为,基于突触前末端准备释放的 SV 数量,量子含量概率分布是二项式的。但是,由于其随机补充,后一个数量本身会波动,因此实际的量子含量分布是未知的。我们表明,在稳态下,一般的随机 AP 输入可以推导出量子含量的精确分布。对于固定间隔的 AP 训练,我们证明了该分布是二项式的,并通过与幼年小鼠 MNTB-LSO 突触的电生理记录进行比较,验证了我们的预测。对于泊松训练,我们表明该分布不是二项式的。此外,我们还发现了泊松和其他一般情况下的量子含量的精确矩,这可能用于从实验中获得模型参数。