基于组织转录组学驱动鉴定表皮生长因子作为慢性肾脏病生物标志物

Tissue transcriptome-driven identification of epidermal growth factor as a chronic kidney disease biomarker.

作者信息

Ju Wenjun, Nair Viji, Smith Shahaan, Zhu Li, Shedden Kerby, Song Peter X K, Mariani Laura H, Eichinger Felix H, Berthier Celine C, Randolph Ann, Lai Jennifer Yi-Chun, Zhou Yan, Hawkins Jennifer J, Bitzer Markus, Sampson Matthew G, Thier Martina, Solier Corinne, Duran-Pacheco Gonzalo C, Duchateau-Nguyen Guillemette, Essioux Laurent, Schott Brigitte, Formentini Ivan, Magnone Maria C, Bobadilla Maria, Cohen Clemens D, Bagnasco Serena M, Barisoni Laura, Lv Jicheng, Zhang Hong, Wang Hai-Yan, Brosius Frank C, Gadegbeku Crystal A, Kretzler Matthias

机构信息

Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.

Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA.

出版信息

Sci Transl Med. 2015 Dec 2;7(316):316ra193. doi: 10.1126/scitranslmed.aac7071.

Abstract

Chronic kidney disease (CKD) affects 8 to 16% people worldwide, with an increasing incidence and prevalence of end-stage kidney disease (ESKD). The effective management of CKD is confounded by the inability to identify patients at high risk of progression while in early stages of CKD. To address this challenge, a renal biopsy transcriptome-driven approach was applied to develop noninvasive prognostic biomarkers for CKD progression. Expression of intrarenal transcripts was correlated with the baseline estimated glomerular filtration rate (eGFR) in 261 patients. Proteins encoded by eGFR-associated transcripts were tested in urine for association with renal tissue injury and baseline eGFR. The ability to predict CKD progression, defined as the composite of ESKD or 40% reduction of baseline eGFR, was then determined in three independent CKD cohorts. A panel of intrarenal transcripts, including epidermal growth factor (EGF), a tubule-specific protein critical for cell differentiation and regeneration, predicted eGFR. The amount of EGF protein in urine (uEGF) showed significant correlation (P < 0.001) with intrarenal EGF mRNA, interstitial fibrosis/tubular atrophy, eGFR, and rate of eGFR loss. Prediction of the composite renal end point by age, gender, eGFR, and albuminuria was significantly (P < 0.001) improved by addition of uEGF, with an increase of the C-statistic from 0.75 to 0.87. Outcome predictions were replicated in two independent CKD cohorts. Our approach identified uEGF as an independent risk predictor of CKD progression. Addition of uEGF to standard clinical parameters improved the prediction of disease events in diverse CKD populations with a wide spectrum of causes and stages.

摘要

慢性肾脏病(CKD)影响着全球8%至16%的人口,终末期肾病(ESKD)的发病率和患病率呈上升趋势。CKD的有效管理因无法在疾病早期识别出具有高进展风险的患者而受到困扰。为应对这一挑战,采用了一种基于肾活检转录组的方法来开发用于预测CKD进展的非侵入性生物标志物。对261例患者的肾内转录本表达与基线估计肾小球滤过率(eGFR)进行了相关性分析。对eGFR相关转录本编码的蛋白质在尿液中进行检测,以确定其与肾组织损伤和基线eGFR的相关性。然后在三个独立的CKD队列中确定预测CKD进展的能力,CKD进展定义为ESKD或基线eGFR降低40%的综合情况。一组肾内转录本,包括对细胞分化和再生至关重要的肾小管特异性蛋白表皮生长因子(EGF),可预测eGFR。尿中EGF蛋白(uEGF)的含量与肾内EGF mRNA、间质纤维化/肾小管萎缩、eGFR及eGFR下降速率均呈显著相关(P<0.001)。加入uEGF后,年龄、性别、eGFR和蛋白尿对复合肾终点的预测显著改善(P<0.001),C统计量从0.75增加到0.87。在两个独立的CKD队列中重复了结果预测。我们的方法确定uEGF是CKD进展的独立风险预测因子。将uEGF添加到标准临床参数中,可改善对各种病因和疾病阶段的不同CKD人群疾病事件的预测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索