Suppr超能文献

肌肉网络:姿势控制过程中肌电图活动的连通性分析。

Muscle networks: Connectivity analysis of EMG activity during postural control.

作者信息

Boonstra Tjeerd W, Danna-Dos-Santos Alessander, Xie Hong-Bo, Roerdink Melvyn, Stins John F, Breakspear Michael

机构信息

MOVE Research Institute Amsterdam, VU University, Amsterdam, The Netherlands.

Black Dog Institute, University of New South Wales, Sydney, Australia.

出版信息

Sci Rep. 2015 Dec 4;5:17830. doi: 10.1038/srep17830.

Abstract

Understanding the mechanisms that reduce the many degrees of freedom in the musculoskeletal system remains an outstanding challenge. Muscle synergies reduce the dimensionality and hence simplify the control problem. How this is achieved is not yet known. Here we use network theory to assess the coordination between multiple muscles and to elucidate the neural implementation of muscle synergies. We performed connectivity analysis of surface EMG from ten leg muscles to extract the muscle networks while human participants were standing upright in four different conditions. We observed widespread connectivity between muscles at multiple distinct frequency bands. The network topology differed significantly between frequencies and between conditions. These findings demonstrate how muscle networks can be used to investigate the neural circuitry of motor coordination. The presence of disparate muscle networks across frequencies suggests that the neuromuscular system is organized into a multiplex network allowing for parallel and hierarchical control structures.

摘要

了解减少肌肉骨骼系统中多个自由度的机制仍然是一个突出的挑战。肌肉协同作用减少了维度,从而简化了控制问题。但目前尚不清楚这是如何实现的。在这里,我们使用网络理论来评估多块肌肉之间的协调性,并阐明肌肉协同作用的神经机制。在人类参与者以四种不同姿势直立站立时,我们对来自腿部十块肌肉的表面肌电图进行了连通性分析,以提取肌肉网络。我们观察到在多个不同频段的肌肉之间存在广泛的连通性。网络拓扑结构在不同频率和不同姿势之间存在显著差异。这些发现证明了如何利用肌肉网络来研究运动协调的神经回路。不同频率下不同肌肉网络的存在表明,神经肌肉系统被组织成一个多重网络,允许并行和分层的控制结构。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验