Bianchini Matteo, Fauth François, Suard Emmanuelle, Leriche Jean Bernard, Masquelier Christian, Croguennec Laurence
Laboratoire de Réactivité et de Chimie des Solides, CNRS-UMR#7314, Université de Picardie Jules Verne, F-80039 Amiens CEDEX 1, France.
CELLS - ALBA synchrotron, Cerdanyola del Vallès, E-08290 Barcelona, Spain.
Acta Crystallogr B Struct Sci Cryst Eng Mater. 2015 Dec 1;71(Pt 6):688-701. doi: 10.1107/S2052520615017199. Epub 2015 Nov 7.
In the last few decades Li-ion batteries changed the way we store energy, becoming a key element of our everyday life. Their continuous improvement is tightly bound to the understanding of lithium (de)intercalation phenomena in electrode materials. Here we address the use of operando diffraction techniques to understand these mechanisms. We focus on powerful probes such as neutrons and synchrotron X-ray radiation, which have become increasingly familiar to the electrochemical community. After discussing the general benefits (and drawbacks) of these characterization techniques and the work of customization required to adapt standard electrochemical cells to an operando diffraction experiment, we highlight several very recent results. We concentrate on important electrode materials such as the spinels Li1 + xMn2 - xO4 (0 ≤ x ≤ 0.10) and LiNi0.4Mn1.6O4. Thorough investigations led by operando neutron powder diffraction demonstrated that neutrons are highly sensitive to structural parameters that cannot be captured by other means (for example, atomic Debye-Waller factors and lithium site occupancy). Synchrotron radiation X-ray powder diffraction reveals how LiMn2O4 is subject to irreversibility upon the first electrochemical cycle, resulting in severe Bragg peak broadening. Even more interestingly, we show for the first time an ordering scheme of the elusive composition Li0.5Mn2O4, through the coexistence of Mn(3+):Mn(4+) 1:3 cation ordering and lithium/vacancy ordering. More accurately written as Li0.5Mn(3+)0.5Mn(4+)1.5O4, this intermediate phase loses the Fd\overline 3m symmetry, to be correctly described in the P213 space group.
在过去几十年里,锂离子电池改变了我们储存能量的方式,成为我们日常生活中的关键元素。它们的不断改进与对电极材料中锂(脱)嵌入现象的理解紧密相关。在此,我们探讨使用原位衍射技术来理解这些机制。我们聚焦于强大的探测手段,如中子和同步辐射X射线,电化学领域对它们已越来越熟悉。在讨论了这些表征技术的一般优点(和缺点)以及将标准电化学电池适配于原位衍射实验所需的定制工作之后,我们突出了一些非常新的成果。我们专注于重要的电极材料,如尖晶石Li1 + xMn2 - xO4(0 ≤ x ≤ 0.10)和LiNi0.4Mn1.6O4。由原位中子粉末衍射进行的深入研究表明,中子对其他手段无法捕捉的结构参数高度敏感(例如,原子德拜 - 瓦勒因子和锂位点占有率)。同步辐射X射线粉末衍射揭示了LiMn2O4在首次电化学循环时如何发生不可逆变化,导致布拉格峰严重展宽。更有趣的是,我们首次展示了难以捉摸的组成Li0.5Mn2O4的有序方案,通过Mn(3 + ):Mn(4 + ) 1:3阳离子有序和锂/空位有序的共存。更准确地写成Li0.5Mn(3 + )0.5Mn(4 + )1.5O4,这个中间相失去了Fd\overline 3m对称性,应在P213空间群中正确描述。