Flach Edward, Norbury John, Schnell Santiago
Integrated Mathematical Oncology, Moffitt Cancer Center and Research Institute, Tampa, Florida, USA.
Mathematical Institute, University of Oxford, 24-29 St Giles', Oxford, OX1 3LB, UK.
Biomath (Sofia). 2013;2(1). doi: 10.11145/j.biomath.2013.03.027.
Convection-induced instability in reaction-diffusion systems produces complicated patterns of oscillations behind propagating wavefronts. We transform the system twice: into lambda-omega form, then into polar variables. We find analytical estimates for the wavefront speed which we confirm numerically. Our previous work examined a simpler system [E. H. Flach, S. Schnell, and J. Norbury, Phys. Rev. E 76, 036216 (2007)]; the onset of instability is qualitatively different in numerical solutions of this system. We modify our estimates and connect the two different behaviours. Our estimate explains how the Turing instability fits with pattern found in reaction-diffusion-convection systems. Our results can have important applications to the pattern formation analysis of biological systems.
反应扩散系统中对流诱导的不稳定性在传播波前之后产生复杂的振荡模式。我们对该系统进行两次变换:首先变换为拉姆达-欧米伽形式,然后变换为极坐标变量。我们找到了波前速度的解析估计值,并通过数值方法进行了验证。我们之前的工作研究了一个更简单的系统[E. H. 弗拉赫、S. 施内尔和J. 诺伯里,《物理评论E》76, 036216 (2007)];该系统的数值解中不稳定性的起始在性质上有所不同。我们修改了我们的估计值,并将这两种不同的行为联系起来。我们的估计解释了图灵不稳定性如何与反应扩散对流系统中发现的模式相契合。我们的结果在生物系统的模式形成分析中可能具有重要应用。