Murray J D
Philos Trans R Soc Lond B Biol Sci. 1981 Oct 7;295(1078):473-96. doi: 10.1098/rstb.1981.0155.
The patterns on wings of Lepidoptera can be generated with a few pattern elements, but no mechanism has been suggested for producing them. I consider two of the basic patterns, namely, central symmetry and dependent patterns. A biochemically plausible model mechanism is proposed for generating major aspects of these patterns, based on a diffusing morphogen that activates a gene or colour-specific enzyme in a threshold manner to generate a stable heterogeneous spatial pattern. The model is applied to the determination stream hypothesis of Kühn & von Engelhardt (Wilhelm Roux Arch. Entw Mech. Org. 130, 660 (1933)), and results from the model compared with their microcautery experiments on the pupal wing of Ephestia kühniella. In the case of dependent patterns, results are compared with patterns on specific Papilionidae. For the same mechanism and a fixed set of parameters I demonstrate the important roles of geometry and scale on the spatial patterns obtained. The results and evidence presented here suggest the existence of diffusion fields of the order of several millimetres, which are very much larger than most embryonic fields. The existence of zones of polarizing activity is also indicated. Colour patterns on animals are considered to be genetically determined, but the mechanism is not known. I have previously suggested that a single mechanism that can exhibit an infinite variety of patterns is a candidate for that mechanism, and proposed that a reaction-diffusion system that can be diffusively driven unstable could be responsible for the laying down of the spacing patterns that generates the pre-pattern for animal coat markings. For illustrative purposes I consider, a practical reaction mechanism, which exhibits substrate inhibition, and show that the geometry and scale of the domain (part of the epidermis) play a crucial role in the structural patterns that result. Patterns are obtained for a selection of geometries, and general features are related to the coat colour distribution in the spotted Felidae, giraffe, zebra and other animals. The patterns depend on the initial conditions, but for a given geometry and scale are qualitatively similar, a positive feature of the model and a necessary model attribute in view of the pattern individuality on animals of the same species.
鳞翅目昆虫翅膀上的图案可以由少数图案元素生成,但尚未有人提出产生这些图案的机制。我考虑了两种基本图案,即中心对称图案和相关图案。基于一种扩散形态发生素,提出了一种生化上合理的模型机制来生成这些图案的主要方面,该形态发生素以阈值方式激活基因或颜色特异性酶,以产生稳定的异质空间图案。该模型应用于库恩和冯·恩格尔哈特的决定流假说(《威廉·鲁克斯发育机制档案》130卷,660页(1933年)),并将模型结果与他们对地中海粉螟蛹翅的微烧灼实验结果进行比较。对于相关图案的情况,将结果与特定凤蝶科的图案进行比较。对于相同的机制和一组固定参数,我展示了几何形状和尺度对所获得的空间图案的重要作用。这里给出的结果和证据表明存在几毫米量级的扩散场,这比大多数胚胎场要大得多。同时也表明了极化活性区域的存在。动物身上的颜色图案被认为是由基因决定的,但具体机制尚不清楚。我之前曾提出,一种能够展现出无限多种图案的单一机制可能是其成因,并提出一个可扩散驱动不稳定的反应扩散系统可能负责形成间距图案,从而为动物皮毛斑纹生成前体图案。为了说明目的,我考虑了一种具有底物抑制作用的实际反应机制,并表明区域(表皮的一部分)的几何形状和尺度在最终形成的结构图案中起着关键作用。针对一系列几何形状获得了图案,并将其一般特征与豹猫、长颈鹿、斑马和其他动物的皮毛颜色分布相关联。这些图案取决于初始条件,但对于给定的几何形状和尺度,它们在定性上是相似的,这是该模型的一个积极特性,也是鉴于同一物种动物图案的个体性而必需的模型属性。