Cervetti Christian, Rettori Angelo, Pini Maria Gloria, Cornia Andrea, Repollés Ana, Luis Fernando, Dressel Martin, Rauschenbach Stephan, Kern Klaus, Burghard Marko, Bogani Lapo
1. Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany.
Dipartimento di Fisica, Università di Firenze, Via G. Sansone 1, I-50019 Sesto Fiorentino, Italy.
Nat Mater. 2016 Feb;15(2):164-8. doi: 10.1038/nmat4490. Epub 2015 Dec 7.
Controlling the dynamics of spins on surfaces is pivotal to the design of spintronic and quantum computing devices. Proposed schemes involve the interaction of spins with graphene to enable surface-state spintronics and electrical spin manipulation. However, the influence of the graphene environment on the spin systems has yet to be unravelled. Here we explore the spin-graphene interaction by studying the classical and quantum dynamics of molecular magnets on graphene. Whereas the static spin response remains unaltered, the quantum spin dynamics and associated selection rules are profoundly modulated. The couplings to graphene phonons, to other spins, and to Dirac fermions are quantified using a newly developed model. Coupling to Dirac electrons introduces a dominant quantum relaxation channel that, by driving the spins over Villain's threshold, gives rise to fully coherent, resonant spin tunnelling. Our findings provide fundamental insight into the interaction between spins and graphene, establishing the basis for electrical spin manipulation in graphene nanodevices.
控制表面自旋的动力学对于自旋电子学和量子计算设备的设计至关重要。提出的方案涉及自旋与石墨烯的相互作用,以实现表面态自旋电子学和电自旋操控。然而,石墨烯环境对自旋系统的影响尚未得到揭示。在这里,我们通过研究石墨烯上分子磁体的经典和量子动力学来探索自旋-石墨烯相互作用。虽然静态自旋响应保持不变,但量子自旋动力学和相关的选择规则却受到了深刻的调制。使用新开发的模型对与石墨烯声子、其他自旋以及狄拉克费米子的耦合进行了量化。与狄拉克电子的耦合引入了一个主导的量子弛豫通道,该通道通过驱动自旋超过维兰阈值,产生完全相干的共振自旋隧穿。我们的发现为自旋与石墨烯之间的相互作用提供了基本见解,为石墨烯纳米器件中的电自旋操控奠定了基础。