Suppr超能文献

在薄膜分子半导体中进行基于自旋的信息处理的潜力。

Potential for spin-based information processing in a thin-film molecular semiconductor.

机构信息

1] London Centre for Nanotechnology and Department of Physics and Astronomy, University College London, London WC1H 0AH, UK [2] Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA (M.W.); Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK (G.W.M.); RMD Inc., 44 Hunt Street, Watertown, Massachusetts 02472, USA (J.A.G.).

出版信息

Nature. 2013 Nov 28;503(7477):504-8. doi: 10.1038/nature12597. Epub 2013 Oct 27.

Abstract

Organic semiconductors are studied intensively for applications in electronics and optics, and even spin-based information technology, or spintronics. Fundamental quantities in spintronics are the population relaxation time (T1) and the phase memory time (T2): T1 measures the lifetime of a classical bit, in this case embodied by a spin oriented either parallel or antiparallel to an external magnetic field, and T2 measures the corresponding lifetime of a quantum bit, encoded in the phase of the quantum state. Here we establish that these times are surprisingly long for a common, low-cost and chemically modifiable organic semiconductor, the blue pigment copper phthalocyanine, in easily processed thin-film form of the type used for device fabrication. At 5 K, a temperature reachable using inexpensive closed-cycle refrigerators, T1 and T2 are respectively 59 ms and 2.6 μs, and at 80 K, which is just above the boiling point of liquid nitrogen, they are respectively 10 μs and 1 μs, demonstrating that the performance of thin-film copper phthalocyanine is superior to that of single-molecule magnets over the same temperature range. T2 is more than two orders of magnitude greater than the duration of the spin manipulation pulses, which suggests that copper phthalocyanine holds promise for quantum information processing, and the long T1 indicates possibilities for medium-term storage of classical bits in all-organic devices on plastic substrates.

摘要

有机半导体在电子学和光学领域的应用得到了广泛的研究,甚至在基于自旋的信息技术或自旋电子学领域也有应用。自旋电子学的基本量是弛豫时间(T1)和相位记忆时间(T2):T1 衡量经典比特的寿命,在这种情况下,经典比特由一个自旋表示,该自旋要么与外部磁场平行,要么与外部磁场反平行;T2 衡量量子比特的相应寿命,该量子比特以量子态的相位编码。在这里,我们发现对于一种常见的、低成本的、可化学修饰的有机半导体,即蓝色颜料铜酞菁,在容易处理的薄膜形式中,这些时间非常长,这种薄膜形式用于器件制造。在 5 K 的温度下,使用廉价的闭路循环致冷器可以达到这个温度,T1 和 T2 分别为 59 ms 和 2.6 μs,在 80 K 的温度下,略高于液氮的沸点,T1 和 T2 分别为 10 μs 和 1 μs,这表明薄膜铜酞菁的性能在相同的温度范围内优于单分子磁体。T2 比自旋操纵脉冲的持续时间大两个数量级以上,这表明铜酞菁有望用于量子信息处理,而较长的 T1 则表明在塑料衬底上的全有机器件中,经典比特的中期存储是有可能的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验