Kavli Institute of Nanoscience, Delft University of Technology, 2600 GA, Delft, The Netherlands.
Nat Nanotechnol. 2013 Aug;8(8):565-8. doi: 10.1038/nnano.2013.140. Epub 2013 Jul 28.
Although electron spins in III-V semiconductor quantum dots have shown great promise as qubits, hyperfine decoherence remains a major challenge in these materials. Group IV semiconductors possess dominant nuclear species that are spinless, allowing qubit coherence times up to 2 s. In carbon nanotubes, where the spin-orbit interaction allows for all-electrical qubit manipulation, theoretical predictions of the coherence time vary by at least six orders of magnitude and range up to 10 s or more. Here, we realize a qubit encoded in two nanotube valley-spin states, with coherent manipulation via electrically driven spin resonance mediated by a bend in the nanotube. Readout uses Pauli blockade leakage current through a double quantum dot. Arbitrary qubit rotations are demonstrated and the coherence time is measured for the first time via Hahn echo, allowing comparison with theoretical predictions. The coherence time is found to be ∼65 ns, probably limited by electrical noise. This shows that, even with low nuclear spin abundance, coherence can be strongly degraded if the qubit states are coupled to electric fields.
尽管 III-V 半导体量子点中的电子自旋作为量子比特表现出了巨大的潜力,但超精细退相干仍然是这些材料中的一个主要挑战。IV 族半导体具有自旋为零的主导核种,从而使量子比特相干时间长达 2 秒。在碳纳米管中,自旋轨道相互作用允许全电量子比特操纵,相干时间的理论预测相差至少六个数量级,范围可达 10 秒或更长。在这里,我们实现了一个由两个纳米管谷自旋态编码的量子比特,通过纳米管弯曲介导的电驱动自旋共振进行相干操作。读出使用通过双量子点的 Pauli 阻塞泄漏电流。我们展示了任意的量子比特旋转,并首次通过哈恩回波测量了相干时间,从而可以与理论预测进行比较。相干时间约为 65ns,可能受到电噪声的限制。这表明,即使核自旋丰度较低,如果量子比特状态与电场耦合,相干性也会受到强烈的破坏。