Suppr超能文献

利用在线便利样本库研究罕见和分散人群的效用。

The Utility of an Online Convenience Panel for Reaching Rare and Dispersed Populations.

作者信息

Sell Randall, Goldberg Shoshana, Conron Kerith

机构信息

Department of Community Health and Prevention, School of Public Health, Drexel University, Philadelphia, Pennsylvania, United States of America.

University of North Carolina, Chapel Hill, North Carolina, United States of America.

出版信息

PLoS One. 2015 Dec 7;10(12):e0144011. doi: 10.1371/journal.pone.0144011. eCollection 2015.

Abstract

Gaps in data collection systems, as well as challenges associated with gathering data from rare and dispersed populations, render current health surveillance systems inadequate to identify and monitor efforts to reduce health disparities. Using sexual and gender minorities we investigated the utility of using a large nonprobability online panel to conduct rapid population assessments of such populations using brief surveys. Surveys of the Google Android Panel (four assessing sexual orientation and one assessing gender identity and sex assigned at birth) were conducted resulting in invitation of 53,739 application users (37,505 of whom viewed the invitation) to generate a total of 34,759 who completed screening questions indicating their sexual orientation, or gender identity and sex at birth. Where possible we make comparisons to similar data from two population-based surveys (NHIS and NESARC). We found that 99.4% to 100.0% of respondents across our Google Android panel samples completed the screening questions and 97.8% to 99.2% of those that consented to participate in our surveys indicated they were "OK" with the content of surveys that assessed sexual orientation and sex/gender. In our Google Android panel samples there was a higher percentage of sexual minority respondents than in either NHIS or NESARC with 7.4% of men and 12.4% of women reporting gay, lesbian or bisexual identities. The proportion sexual minority was 2.8 to 5.6 times higher in the Google Android panel samples than was found in the 2012 NHIS sample, for men and women, respectively. The percentage of "transgender" identified individuals in the Google sample was 0.7%, which is similar to 0.5% transgender identified through the Massachusetts BRFSS, and using a transgender status item we found that 2.0% of the overall sample fit could be classified as transgender. The Google samples sometimes more closely approximated national averages for ethnicity and race than NHIS.

摘要

数据收集系统存在的漏洞,以及从稀少且分散的人群中收集数据所面临的挑战,使得当前的健康监测系统不足以识别和监测为减少健康差距所做的努力。我们以性少数群体和性别少数群体为研究对象,调查了使用大型非概率在线样本库,通过简短调查对这类人群进行快速人口评估的效用。我们对谷歌安卓样本库进行了调查(四项评估性取向,一项评估性别认同及出生时被指定的性别),邀请了53739名应用程序用户(其中37505人查看了邀请),最终共有34759人完成了筛查问题,表明了他们的性取向、性别认同或出生时的性别。我们尽可能地将这些数据与两项基于人群的调查(美国国家健康访谈调查和全国酒精及相关疾病流行病学调查)中的类似数据进行比较。我们发现,在我们的谷歌安卓样本库中,99.4%至100.0%的受访者完成了筛查问题,在同意参与我们调查的人中,97.8%至99.2%的人表示他们对评估性取向和性/性别的调查内容“没问题”。在我们谷歌安卓样本库中,性少数群体受访者的比例高于美国国家健康访谈调查或全国酒精及相关疾病流行病学调查中的比例,7.4%的男性和12.4%的女性报告自己为同性恋、女同性恋或双性恋身份。在谷歌安卓样本库中,性少数群体的比例分别是2012年美国国家健康访谈调查样本中男性和女性比例的2.8至5.6倍。谷歌样本中“跨性别”身份的个体比例为0.7%,这与通过马萨诸塞州行为风险因素监测系统识别出的0.5%的跨性别者比例相似,并且使用一个跨性别身份项目,我们发现总体样本中有2.0%的人可被归类为跨性别者。与美国国家健康访谈调查相比,谷歌样本在种族和民族方面有时更接近全国平均水平。

相似文献

1
The Utility of an Online Convenience Panel for Reaching Rare and Dispersed Populations.
PLoS One. 2015 Dec 7;10(12):e0144011. doi: 10.1371/journal.pone.0144011. eCollection 2015.
2
Sexual Victimization and Subsequent Police Reporting by Gender Identity Among Lesbian, Gay, Bisexual, Transgender, and Queer Adults.
Violence Vict. 2016;31(2):320-31. doi: 10.1891/0886-6708.VV-D-14-00082. Epub 2016 Jan 29.
6
Measuring Sexual and Gender Minority Populations in Health Surveillance.
LGBT Health. 2017 Apr;4(2):82-105. doi: 10.1089/lgbt.2016.0026. Epub 2017 Mar 13.
7
Exploring the diversity of gender and sexual orientation identities in an online sample of transgender individuals.
J Sex Res. 2012;49(2-3):244-54. doi: 10.1080/00224499.2011.596954. Epub 2011 Jul 28.
8
Transgender Population Size in the United States: a Meta-Regression of Population-Based Probability Samples.
Am J Public Health. 2017 Feb;107(2):e1-e8. doi: 10.2105/AJPH.2016.303578.

引用本文的文献

1
Transgender health issues addressed in research on telehealth use: a scoping review.
Front Sociol. 2024 Nov 25;9:1371524. doi: 10.3389/fsoc.2024.1371524. eCollection 2024.
3
Using Panel Vendors for Recruitment Into a Web-Based Family Prevention Program: Methodological Considerations.
Eval Health Prof. 2017 Jan 1:163278717742189. doi: 10.1177/0163278717742189.
4
Exposure to Marijuana Marketing After Legalization of Retail Sales: Oregonians' Experiences, 2015-2016.
Am J Public Health. 2018 Jan;108(1):120-127. doi: 10.2105/AJPH.2017.304136. Epub 2017 Nov 21.
5
Challenges and Solutions to Collecting Sexual Orientation and Gender Identity Data.
Am J Public Health. 2017 Aug;107(8):1212-1214. doi: 10.2105/AJPH.2017.303917. Epub 2017 Jun 28.
6
Transgender Population Size in the United States: a Meta-Regression of Population-Based Probability Samples.
Am J Public Health. 2017 Feb;107(2):e1-e8. doi: 10.2105/AJPH.2016.303578.
7
Mischievous responding in Internet Gaming Disorder research.
PeerJ. 2016 Sep 13;4:e2401. doi: 10.7717/peerj.2401. eCollection 2016.

本文引用的文献

4
Sex and gender in the US health surveillance system: a call to action.
Am J Public Health. 2014 Jun;104(6):970-6. doi: 10.2105/AJPH.2013.301831. Epub 2014 Apr 17.
5
Sexual orientation data collection policy in the United States: public health malpractice.
Am J Public Health. 2014 Jun;104(6):967-9. doi: 10.2105/AJPH.2013.301814. Epub 2014 Apr 17.
6
Sampling bias in transgender studies.
Lancet Infect Dis. 2013 Oct;13(10):832. doi: 10.1016/S1473-3099(13)70242-1.
10
Sexual orientation data collection and progress toward Healthy People 2010.
Am J Public Health. 2001 Jun;91(6):876-82. doi: 10.2105/ajph.91.6.876.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验