From the Department of Epidemiology, University of Washington, Seattle, WA.
Department of Global Health, University of Washington, Seattle, WA.
Epidemiology. 2019 Sep;30(5):669-678. doi: 10.1097/EDE.0000000000001046.
National surveys based on probability sampling methods, such as the Behavioral Risk Factor and Surveillance System (BRFSS), are crucial tools for unbiased estimates of health disparities. In 2014, the BRFSS began offering a module to capture transgender and gender nonconforming identity. Although the BRFSS provides much needed data on the this population, these respondents are vulnerable to misclassification of sex assigned at birth.
We applied quantitative bias analysis to explore the magnitude and direction of the systematic bias present as a result of this misclassification. We use multivariate Poisson regression with robust standard errors to estimate the association between gender and four sex-specific outcomes: prostate-specific antigen testing, Pap testing, hysterectomy, and pregnancy. We applied single and multiple imputation methods, and probabilistic adjustments to explore bias present in these estimates.
Combined BRFSS data from 2014, 2015, and 2016 included 1078 transgender women, 701 transgender men, and 450 gender nonconforming individuals. Sex assigned at birth was misclassified among 29.6% of transgender women and 30.2% of transgender men. Transgender and gender nonconforming individuals excluded due to sex-based skip patterns are demographically distinct from those who were asked reproductive health questions, suggesting that there is noteworthy selection bias present in the data. Estimates for gender nonconforming respondents are vulnerable to small degrees of bias, while estimates for cancer screenings among transgender women and men are more robust to moderate degrees of bias.
Our results demonstrate that the BRFSS methodology introduces substantial uncertainty into reproductive health measures, which could bias population-based estimates. These findings emphasize the importance of implementing validated sex and gender questions in health surveillance surveys. See video abstract at, http://links.lww.com/EDE/B562.
基于概率抽样方法的全国性调查,如行为风险因素和监测系统(BRFSS),是对健康差异进行无偏估计的重要工具。2014 年,BRFSS 开始提供一个模块来捕捉跨性别和性别不一致的身份。尽管 BRFSS 提供了有关这一人群的急需数据,但这些受访者容易出现出生时性别分配的错误分类。
我们应用定量偏差分析来探索由于这种错误分类而存在的系统偏差的大小和方向。我们使用多元泊松回归和稳健标准误差来估计性别与四个性别特异性结果之间的关联:前列腺特异性抗原检测、巴氏试验、子宫切除术和怀孕。我们应用单一和多重插补方法以及概率调整来探索这些估计中的偏差。
2014 年、2015 年和 2016 年的合并 BRFSS 数据包括 1078 名跨性别女性、701 名跨性别男性和 450 名性别不一致者。29.6%的跨性别女性和 30.2%的跨性别男性的出生时性别被错误分类。由于基于性别的跳过模式而被排除的跨性别和性别不一致个体在人口统计学上与那些被问及生殖健康问题的个体不同,这表明数据中存在显著的选择偏差。性别不一致者的估计值容易受到较小程度的偏差的影响,而跨性别女性和男性的癌症筛查估计值对中度偏差更稳健。
我们的结果表明,BRFSS 方法学在生殖健康测量方面引入了大量的不确定性,这可能会对基于人群的估计产生偏差。这些发现强调了在健康监测调查中实施经过验证的性别问题的重要性。在,观看视频摘要,http://links.lww.com/EDE/B562。