Vaquero Juan José, Kinahan Paul
Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, 28911 Madrid, Spain, and Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain; email:
Departments of Radiology, Bioengineering, and Physics, University of Washington, Seattle, Washington 98195; email:
Annu Rev Biomed Eng. 2015;17:385-414. doi: 10.1146/annurev-bioeng-071114-040723.
Positron emission tomography (PET) imaging is based on detecting two time-coincident high-energy photons from the emission of a positron-emitting radioisotope. The physics of the emission, and the detection of the coincident photons, give PET imaging unique capabilities for both very high sensitivity and accurate estimation of the in vivo concentration of the radiotracer. PET imaging has been widely adopted as an important clinical modality for oncological, cardiovascular, and neurological applications. PET imaging has also become an important tool in preclinical studies, particularly for investigating murine models of disease and other small-animal models. However, there are several challenges to using PET imaging systems. These include the fundamental trade-offs between resolution and noise, the quantitative accuracy of the measurements, and integration with X-ray computed tomography and magnetic resonance imaging. In this article, we review how researchers and industry are addressing these challenges.
正电子发射断层扫描(PET)成像基于检测来自发射正电子的放射性同位素的两个时间重合的高能光子。发射的物理过程以及重合光子的检测,赋予了PET成像极高的灵敏度和对体内放射性示踪剂浓度进行准确估计的独特能力。PET成像已被广泛用作肿瘤学、心血管和神经学应用的重要临床手段。PET成像也已成为临床前研究中的重要工具,特别是用于研究疾病的小鼠模型和其他小动物模型。然而,使用PET成像系统存在若干挑战。这些挑战包括分辨率与噪声之间的基本权衡、测量的定量准确性以及与X射线计算机断层扫描和磁共振成像的整合。在本文中,我们综述了研究人员和业界如何应对这些挑战。