Suppr超能文献

正电子发射断层成像图像分割研究综述。

A review on segmentation of positron emission tomography images.

机构信息

Center for Infectious Disease Imaging, Department of Radiology and Imaging Sciences, National Institutes of Health (NIH), Bethesda, MD 20892, United States.

Center for Infectious Disease Imaging, Department of Radiology and Imaging Sciences, National Institutes of Health (NIH), Bethesda, MD 20892, United States.

出版信息

Comput Biol Med. 2014 Jul;50:76-96. doi: 10.1016/j.compbiomed.2014.04.014. Epub 2014 Apr 28.

Abstract

Positron Emission Tomography (PET), a non-invasive functional imaging method at the molecular level, images the distribution of biologically targeted radiotracers with high sensitivity. PET imaging provides detailed quantitative information about many diseases and is often used to evaluate inflammation, infection, and cancer by detecting emitted photons from a radiotracer localized to abnormal cells. In order to differentiate abnormal tissue from surrounding areas in PET images, image segmentation methods play a vital role; therefore, accurate image segmentation is often necessary for proper disease detection, diagnosis, treatment planning, and follow-ups. In this review paper, we present state-of-the-art PET image segmentation methods, as well as the recent advances in image segmentation techniques. In order to make this manuscript self-contained, we also briefly explain the fundamentals of PET imaging, the challenges of diagnostic PET image analysis, and the effects of these challenges on the segmentation results.

摘要

正电子发射断层扫描(PET)是一种在分子水平上进行的非侵入性功能成像方法,它以高灵敏度对生物靶向放射性示踪剂的分布进行成像。PET 成像可提供有关许多疾病的详细定量信息,通常通过检测放射性示踪剂在异常细胞中的定位来检测发射的光子,从而用于评估炎症、感染和癌症。为了在 PET 图像中将异常组织与周围区域区分开来,图像分割方法起着至关重要的作用;因此,对于正确的疾病检测、诊断、治疗计划和随访,通常需要进行准确的图像分割。在这篇综述论文中,我们介绍了最先进的 PET 图像分割方法,以及图像分割技术的最新进展。为了使这篇论文内容完整,我们还简要解释了 PET 成像的基本原理、诊断性 PET 图像分析的挑战,以及这些挑战对分割结果的影响。

相似文献

1
A review on segmentation of positron emission tomography images.正电子发射断层成像图像分割研究综述。
Comput Biol Med. 2014 Jul;50:76-96. doi: 10.1016/j.compbiomed.2014.04.014. Epub 2014 Apr 28.

引用本文的文献

本文引用的文献

10
Optimal co-segmentation of tumor in PET-CT images with context information.基于上下文信息的 PET-CT 图像肿瘤最佳共分割。
IEEE Trans Med Imaging. 2013 Sep;32(9):1685-97. doi: 10.1109/TMI.2013.2263388. Epub 2013 May 16.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验