Suppr超能文献

正电子发射断层成像图像分割研究综述。

A review on segmentation of positron emission tomography images.

机构信息

Center for Infectious Disease Imaging, Department of Radiology and Imaging Sciences, National Institutes of Health (NIH), Bethesda, MD 20892, United States.

Center for Infectious Disease Imaging, Department of Radiology and Imaging Sciences, National Institutes of Health (NIH), Bethesda, MD 20892, United States.

出版信息

Comput Biol Med. 2014 Jul;50:76-96. doi: 10.1016/j.compbiomed.2014.04.014. Epub 2014 Apr 28.

Abstract

Positron Emission Tomography (PET), a non-invasive functional imaging method at the molecular level, images the distribution of biologically targeted radiotracers with high sensitivity. PET imaging provides detailed quantitative information about many diseases and is often used to evaluate inflammation, infection, and cancer by detecting emitted photons from a radiotracer localized to abnormal cells. In order to differentiate abnormal tissue from surrounding areas in PET images, image segmentation methods play a vital role; therefore, accurate image segmentation is often necessary for proper disease detection, diagnosis, treatment planning, and follow-ups. In this review paper, we present state-of-the-art PET image segmentation methods, as well as the recent advances in image segmentation techniques. In order to make this manuscript self-contained, we also briefly explain the fundamentals of PET imaging, the challenges of diagnostic PET image analysis, and the effects of these challenges on the segmentation results.

摘要

正电子发射断层扫描(PET)是一种在分子水平上进行的非侵入性功能成像方法,它以高灵敏度对生物靶向放射性示踪剂的分布进行成像。PET 成像可提供有关许多疾病的详细定量信息,通常通过检测放射性示踪剂在异常细胞中的定位来检测发射的光子,从而用于评估炎症、感染和癌症。为了在 PET 图像中将异常组织与周围区域区分开来,图像分割方法起着至关重要的作用;因此,对于正确的疾病检测、诊断、治疗计划和随访,通常需要进行准确的图像分割。在这篇综述论文中,我们介绍了最先进的 PET 图像分割方法,以及图像分割技术的最新进展。为了使这篇论文内容完整,我们还简要解释了 PET 成像的基本原理、诊断性 PET 图像分析的挑战,以及这些挑战对分割结果的影响。

相似文献

1
A review on segmentation of positron emission tomography images.
Comput Biol Med. 2014 Jul;50:76-96. doi: 10.1016/j.compbiomed.2014.04.014. Epub 2014 Apr 28.
2
PET attenuation correction using synthetic CT from ultrashort echo-time MR imaging.
J Nucl Med. 2014 Dec;55(12):2071-7. doi: 10.2967/jnumed.114.143958. Epub 2014 Nov 20.
3
PET/MRI with diagnostic MR sequences vs PET/CT in the detection of abdominal and pelvic cancer.
Eur J Radiol. 2016 Apr;85(4):751-9. doi: 10.1016/j.ejrad.2016.01.010. Epub 2016 Jan 21.
4
Does a novel penalized likelihood reconstruction of 18F-FDG PET-CT improve signal-to-background in colorectal liver metastases?
Eur J Radiol. 2015 Oct;84(10):1873-8. doi: 10.1016/j.ejrad.2015.06.025. Epub 2015 Jun 29.
5
Automatic lung tumor segmentation on PET/CT images using fuzzy Markov random field model.
Comput Math Methods Med. 2014;2014:401201. doi: 10.1155/2014/401201. Epub 2014 May 29.
6
Real-time volume rendering visualization of dual-modality PET/CT images with interactive fuzzy thresholding segmentation.
IEEE Trans Inf Technol Biomed. 2007 Mar;11(2):161-9. doi: 10.1109/titb.2006.875669.
8
Parallel-way: Multi-modality-based brain tumor segmentation using parallel capsule network.
Electromagn Biol Med. 2024 Oct;43(4):267-291. doi: 10.1080/15368378.2024.2390058. Epub 2024 Oct 29.

引用本文的文献

4
Robustness of textural analysis features in quantitative Tc and Lu SPECT-CT phantom acquisitions.
EJNMMI Phys. 2025 Apr 17;12(1):40. doi: 10.1186/s40658-025-00749-0.
7
Investigation and optimization of PET-guided SPECT reconstructions for improved radionuclide therapy dosimetry estimates.
Front Nucl Med. 2023 Jun 21;3:1124283. doi: 10.3389/fnume.2023.1124283. eCollection 2023.
8
PET radiomics in lung cancer: advances and translational challenges.
EJNMMI Phys. 2024 Oct 3;11(1):81. doi: 10.1186/s40658-024-00685-5.
9
The diagnostic value of Ga-NOTA-MAL-Cys-MZHER PET/CT imaging for HER2-positive lung adenocarcinoma.
Front Med (Lausanne). 2024 Aug 13;11:1447500. doi: 10.3389/fmed.2024.1447500. eCollection 2024.
10
Nuclear-Based Labeling of Cellular Immunotherapies: A Simple Protocol for Preclinical Use.
Mol Imaging Biol. 2024 Aug;26(4):555-568. doi: 10.1007/s11307-024-01923-z. Epub 2024 Jul 3.

本文引用的文献

1
Tensor scale: An analytic approach with efficient computation and applications.
Comput Vis Image Underst. 2012 Oct 1;116(10):1060-1075. doi: 10.1016/j.cviu.2012.05.006.
2
Spatially constrained random walk approach for accurate estimation of airway wall surfaces.
Med Image Comput Comput Assist Interv. 2013;16(Pt 2):559-66. doi: 10.1007/978-3-642-40763-5_69.
3
Computer-aided detection and quantification of cavitary tuberculosis from CT scans.
Med Phys. 2013 Nov;40(11):113701. doi: 10.1118/1.4824979.
4
Segmentation of PET images for computer-aided functional quantification of tuberculosis in small animal models.
IEEE Trans Biomed Eng. 2014 Mar;61(3):711-24. doi: 10.1109/TBME.2013.2288258. Epub 2013 Nov 5.
5
Potential of [18F]-fluoromisonidazole positron-emission tomography for radiotherapy planning in head and neck squamous cell carcinomas.
Strahlenther Onkol. 2013 Dec;189(12):1015-9. doi: 10.1007/s00066-013-0454-7. Epub 2013 Nov 1.
6
Contourlet-based active contour model for PET image segmentation.
Med Phys. 2013 Aug;40(8):082507. doi: 10.1118/1.4816296.
7
An automatic method for accurate volume delineation of heterogeneous tumors in PET.
Med Phys. 2013 Aug;40(8):082503. doi: 10.1118/1.4812892.
10
Optimal co-segmentation of tumor in PET-CT images with context information.
IEEE Trans Med Imaging. 2013 Sep;32(9):1685-97. doi: 10.1109/TMI.2013.2263388. Epub 2013 May 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验