Suppr超能文献

容积流成像揭示了在鱿鱼尾先和臂先游泳时涡环形成的重要性。

Volumetric flow imaging reveals the importance of vortex ring formation in squid swimming tail-first and arms-first.

作者信息

Bartol Ian K, Krueger Paul S, Jastrebsky Rachel A, Williams Sheila, Thompson Joseph T

机构信息

Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA

Department of Mechanical Engineering, Southern Methodist University, Dallas, TX 75275, USA.

出版信息

J Exp Biol. 2016 Feb;219(Pt 3):392-403. doi: 10.1242/jeb.129254. Epub 2015 Dec 7.

Abstract

Squids use a pulsed jet and fin movements to swim both arms-first (forward) and tail-first (backward). Given the complexity of the squid multi-propulsor system, 3D velocimetry techniques are required for the comprehensive study of wake dynamics. Defocusing digital particle tracking velocimetry, a volumetric velocimetry technique, and high-speed videography were used to study arms-first and tail-first swimming of brief squid Lolliguncula brevis over a broad range of speeds [0-10 dorsal mantle lengths (DML) s(-1)] in a swim tunnel. Although there was considerable complexity in the wakes of these multi-propulsor swimmers, 3D vortex rings and their derivatives were prominent reoccurring features during both tail-first and arms-first swimming, with the greatest jet and fin flow complexity occurring at intermediate speeds (1.5-3.0 DML s(-1)). The jet generally produced the majority of thrust during rectilinear swimming, increasing in relative importance with speed, and the fins provided no thrust at speeds >4.5 DML s(-1). For both swimming orientations, the fins sometimes acted as stabilizers, producing negative thrust (drag), and consistently provided lift at low/intermediate speeds (<2.0 DML s(-1)) to counteract negative buoyancy. Propulsive efficiency (η) increased with speed irrespective of swimming orientation, and η for swimming sequences with clear isolated jet vortex rings was significantly greater (η=78.6±7.6%, mean±s.d.) than that for swimming sequences with clear elongated regions of concentrated jet vorticity (η=67.9±19.2%). This study reveals the complexity of 3D vortex wake flows produced by nekton with hydrodynamically distinct propulsors.

摘要

鱿鱼通过脉冲式喷射和鳍的运动来游泳,既可以臂先(向前)游,也可以尾先(向后)游。鉴于鱿鱼多推进器系统的复杂性,需要采用三维测速技术来全面研究尾流动力学。使用散焦数字粒子跟踪测速技术(一种体积测速技术)和高速摄像技术,在游泳隧道中研究了短蛸(Lolliguncula brevis)在较宽速度范围[0 - 10倍背甲长度(DML)·秒⁻¹]内的臂先游和尾先游。尽管这些多推进器游泳者的尾流相当复杂,但三维涡环及其衍生物是尾先游和臂先游过程中反复出现的显著特征,在中等速度(1.5 - 3.0 DML·秒⁻¹)时喷射流和鳍的流动最为复杂。在直线游泳过程中,喷射流通常产生大部分推力,其相对重要性随速度增加,而在速度>4.5 DML·秒⁻¹时,鳍不产生推力。对于两种游泳方向,鳍有时起到稳定器的作用,产生负推力(阻力),并在低/中等速度(<2.0 DML·秒⁻¹)时持续提供升力以抵消负浮力。推进效率(η)随速度增加,与游泳方向无关,具有清晰孤立喷射涡环的游泳序列的η(η = 78.6±7.6%,平均值±标准差)显著高于具有清晰细长集中喷射涡度区域的游泳序列的η(η = 67.9±19.2%)。这项研究揭示了具有流体动力学不同推进器的游泳生物产生的三维涡尾流的复杂性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验