Willmann Stefanie J, Mueller Nikola S, Engert Silvia, Sterr Michael, Burtscher Ingo, Raducanu Aurelia, Irmler Martin, Beckers Johannes, Sass Steffen, Theis Fabian J, Lickert Heiko
Institute of Diabetes and Regeneration Research, Institute of Stem Cell Research, Helmholtz Zentrum München, Business Campus Garching, Parkring 11, 85748 Garching, Germany; German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.
Institute of Computational Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.
Mech Dev. 2016 Feb;139:51-64. doi: 10.1016/j.mod.2015.11.004. Epub 2015 Nov 28.
Pancreas organogenesis is a highly dynamic process where neighboring tissue interactions lead to dynamic changes in gene regulatory networks that orchestrate endocrine, exocrine, and ductal lineage formation. To understand the spatio-temporal regulatory logic we have used the Forkhead transcription factor Foxa2-Venus fusion (FVF) knock-in reporter mouse to separate the FVF(+) pancreatic epithelium from the FVF(−) surrounding tissue (mesenchyme, neurons, blood, and blood vessels) to perform a genome-wide mRNA expression profiling at embryonic days (E) 12.5-15.5. Annotating genes and molecular processes suggest that FVF marks endoderm-derived multipotent epithelial progenitors at several lineage restriction steps, when the bulk of endocrine, exocrine and ductal cells are formed during the secondary transition. In the pancreatic epithelial compartment, we identified most known endocrine and exocrine lineage determining factors and diabetes-associated genes, but also unknown genes with spatio-temporal regulated pancreatic expression. In the non-endoderm-derived compartment, we identified many well-described regulatory genes that are not yet functionally annotated in pancreas development, emphasizing that neighboring tissue interactions are still ill defined. Pancreatic expression of over 635 genes was analyzed with them RNA in situ hybridization Genepaint public database. This validated the quality of the profiling data set and identified hundreds of genes with spatially restricted expression patterns in the pancreas. Some of these genes are also targeted by pancreatic transcription factors and show active chromatin marks in human islets of Langerhans. Thus, with the highest spatio-temporal resolution of a global gene expression profile during the secondary transition, our study enables to shed light on neighboring tissue interactions, developmental timing and diabetes gene regulation.
胰腺器官发生是一个高度动态的过程,其中相邻组织的相互作用导致基因调控网络的动态变化,从而协调内分泌、外分泌和导管谱系的形成。为了理解时空调控逻辑,我们使用了叉头转录因子Foxa2-维纳斯融合(FVF)敲入报告基因小鼠,将FVF(+)胰腺上皮与FVF(-)周围组织(间充质、神经元、血液和血管)分离,以在胚胎第12.5-15.5天进行全基因组mRNA表达谱分析。对基因和分子过程的注释表明,FVF在几个谱系限制步骤中标记内胚层来源的多能上皮祖细胞,此时大部分内分泌、外分泌和导管细胞在二次转变期间形成。在胰腺上皮区室中,我们鉴定了大多数已知的内分泌和外分泌谱系决定因子以及与糖尿病相关的基因,还发现了具有时空调控胰腺表达的未知基因。在非内胚层来源的区室中,我们鉴定了许多在胰腺发育中尚未进行功能注释的已充分描述的调控基因,强调相邻组织的相互作用仍未明确界定。使用Genepaint公共数据库中的RNA原位杂交分析了635多个基因的胰腺表达。这验证了分析数据集的质量,并鉴定了数百个在胰腺中具有空间限制表达模式的基因。其中一些基因也是胰腺转录因子的靶点,并在人类胰岛中显示出活跃的染色质标记。因此,通过二次转变期间全球基因表达谱的最高时空分辨率,我们的研究能够揭示相邻组织的相互作用、发育时间和糖尿病基因调控。