Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN.
Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN.
Diabetes. 2023 Jun 1;72(6):746-757. doi: 10.2337/db22-0939.
The transcriptional activity of Pdx1 is modulated by a diverse array of coregulatory factors that govern chromatin accessibility, histone modifications, and nucleosome distribution. We previously identified the Chd4 subunit of the nucleosome remodeling and deacetylase complex as a Pdx1-interacting factor. To identify how loss of Chd4 impacts glucose homeostasis and gene expression programs in β-cells in vivo, we generated an inducible β-cell-specific Chd4 knockout mouse model. Removal of Chd4 from mature islet β-cells rendered mutant animals glucose intolerant, in part due to defects in insulin secretion. We observed an increased ratio of immature-to-mature insulin granules in Chd4-deficient β-cells that correlated with elevated levels of proinsulin both within isolated islets and from plasma following glucose stimulation in vivo. RNA sequencing and assay for transposase-accessible chromatin with sequencing showed that lineage-labeled Chd4-deficient β-cells have alterations in chromatin accessibility and altered expression of genes critical for β-cell function, including MafA, Slc2a2, Chga, and Chgb. Knockdown of CHD4 from a human β-cell line revealed similar defects in insulin secretion and alterations in several β-cell-enriched gene targets. These results illustrate how critical Chd4 activities are in controlling genes essential for maintaining β-cell function.
Pdx1-Chd4 interactions were previously shown to be compromised in β-cells from human donors with type 2 diabetes. β-Cell-specific removal of Chd4 impairs insulin secretion and leads to glucose intolerance in mice. Expression of key β-cell functional genes and chromatin accessibility are compromised in Chd4-deficient β-cells. Chromatin remodeling activities enacted by Chd4 are essential for β-cell function under normal physiological conditions.
Pdx1 的转录活性受多种调节因子调节,这些调节因子控制染色质可及性、组蛋白修饰和核小体分布。我们之前发现核小体重塑和去乙酰化酶复合物的 Chd4 亚基是 Pdx1 的相互作用因子。为了确定 Chd4 的缺失如何影响体内β细胞的葡萄糖稳态和基因表达程序,我们生成了一种诱导型β细胞特异性 Chd4 敲除小鼠模型。从成熟胰岛β细胞中去除 Chd4 使突变动物对葡萄糖不耐受,部分原因是胰岛素分泌缺陷。我们观察到 Chd4 缺陷的β细胞中不成熟到成熟胰岛素颗粒的比例增加,这与在体内葡萄糖刺激后从分离的胰岛和血浆中升高的胰岛素原水平相关。RNA 测序和转座酶可及染色质测序显示,谱系标记的 Chd4 缺陷β细胞的染色质可及性发生改变,并且对β细胞功能至关重要的基因的表达发生改变,包括 MafA、Slc2a2、Chga 和 Chgb。从人β细胞系中敲低 CHD4 显示出胰岛素分泌相似的缺陷以及几个β细胞富集基因靶标的改变。这些结果说明了 Chd4 的关键活性如何控制维持β细胞功能所必需的基因。
先前的研究表明,在 2 型糖尿病患者的β细胞中,Pdx1-Chd4 相互作用受损。β细胞特异性去除 Chd4 会损害胰岛素分泌并导致小鼠葡萄糖不耐受。Chd4 缺陷的β细胞中关键β细胞功能基因的表达和染色质可及性受损。在正常生理条件下,Chd4 执行的染色质重塑活性对于β细胞功能是必需的。