Althaus A L, Zhang H, Parent J M
Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States; Department of Neurology, University of Michigan Medical Center, Ann Arbor, MI, United States.
Department of Neurology, University of Michigan Medical Center, Ann Arbor, MI, United States; VA Ann Arbor Healthcare System, Ann Arbor, MI, United States.
Neurobiol Dis. 2016 Feb;86:187-96. doi: 10.1016/j.nbd.2015.11.024. Epub 2015 Nov 28.
Dentate granule cell (DGC) mossy fiber sprouting (MFS) in mesial temporal lobe epilepsy (mTLE) is thought to underlie the creation of aberrant circuitry which promotes the generation or spread of spontaneous seizure activity. Understanding the extent to which populations of DGCs participate in this circuitry could help determine how it develops and potentially identify therapeutic targets for regulating aberrant network activity. In this study, we investigated how DGC birthdate influences participation in MFS and other aspects of axonal plasticity using the rat pilocarpine-induced status epilepticus (SE) model of mTLE. We injected a retrovirus (RV) carrying a synaptophysin-yellow fluorescent protein (syp-YFP) fusion construct to birthdate DGCs and brightly label their axon terminals, and compared DGCs born during the neonatal period with those generated in adulthood. We found that both neonatal and adult-born DGC populations participate, to a similar extent, in SE-induced MFS within the dentate gyrus inner molecular layer (IML). SE did not alter hilar MF bouton density compared to sham-treated controls, but adult-born DGC bouton density was greater in the IML than in the hilus after SE. Interestingly, we also observed MF axonal reorganization in area CA2 in epileptic rats, and these changes arose from DGCs generated both neonatally and in adulthood. These data indicate that both neonatal and adult-generated DGCs contribute to axonal reorganization in the rat pilocarpine mTLE model, and indicate a more complex relationship between DGC age and participation in seizure-related plasticity than was previously thought.
内侧颞叶癫痫(mTLE)中齿状颗粒细胞(DGC)苔藓纤维发芽(MFS)被认为是异常电路形成的基础,这种异常电路促进了自发性癫痫活动的产生或传播。了解DGC群体参与该电路的程度有助于确定其发展方式,并有可能识别调节异常网络活动的治疗靶点。在本研究中,我们使用大鼠毛果芸香碱诱导的mTLE癫痫持续状态(SE)模型,研究了DGC出生日期如何影响其参与MFS及轴突可塑性的其他方面。我们向出生日期不同的DGC注射携带突触素-黄色荧光蛋白(syp-YFP)融合构建体的逆转录病毒(RV),以明亮地标记它们的轴突终末,并比较新生期出生的DGC与成年期产生的DGC。我们发现,新生期和成年期出生的DGC群体在齿状回内分子层(IML)中参与SE诱导的MFS的程度相似。与假手术对照组相比,SE并未改变海马MF终扣密度,但成年期出生的DGC在SE后IML中的终扣密度高于海马。有趣的是,我们还在癫痫大鼠的CA2区观察到MF轴突重组,这些变化源于新生期和成年期产生的DGC。这些数据表明,新生期和成年期产生的DGC均参与大鼠毛果芸香碱mTLE模型中的轴突重组,并且表明DGC年龄与参与癫痫相关可塑性之间的关系比之前认为的更为复杂。