Graduate Program for Neuroscience, Center for Systems Neuroscience, Boston University, Boston, Massachusetts, USA.
Department of Neurology, University of California Davis School of Medicine, Sacramento, California, USA.
Ann Neurol. 2023 Jul;94(1):106-122. doi: 10.1002/ana.26644. Epub 2023 Apr 7.
Temporal lobe epilepsy (TLE) is a progressive disorder mediated by pathological changes in molecular cascades and hippocampal neural circuit remodeling that results in spontaneous seizures and cognitive dysfunction. Targeting these cascades may provide disease-modifying treatments for TLE patients. Janus Kinase/Signal Transducer and Activator of Transcription (JAK/STAT) inhibitors have emerged as potential disease-modifying therapies; a more detailed understanding of JAK/STAT participation in epileptogenic responses is required, however, to increase the therapeutic efficacy and reduce adverse effects associated with global inhibition.
We developed a mouse line in which tamoxifen treatment conditionally abolishes STAT3 signaling from forebrain excitatory neurons (nSTAT3KO). Seizure frequency (continuous in vivo electroencephalography) and memory (contextual fear conditioning and motor learning) were analyzed in wild-type and nSTAT3KO mice after intrahippocampal kainate (IHKA) injection as a model of TLE. Hippocampal RNA was obtained 24 h after IHKA and subjected to deep sequencing.
Selective STAT3 knock-out in excitatory neurons reduced seizure progression and hippocampal memory deficits without reducing the extent of cell death or mossy fiber sprouting induced by IHKA injection. Gene expression was rescued in major networks associated with response to brain injury, neuronal plasticity, and learning and memory. We also provide the first evidence that neuronal STAT3 may directly influence brain inflammation.
Inhibiting neuronal STAT3 signaling improved outcomes in an animal model of TLE, prevented progression of seizures and cognitive co-morbidities while rescuing pathogenic changes in gene expression of major networks associated with epileptogenesis. Specifically targeting neuronal STAT3 may be an effective disease-modifying strategy for TLE. ANN NEUROL 2023;94:106-122.
颞叶癫痫(TLE)是一种由分子级联和海马神经回路重塑的病理变化介导的进行性疾病,导致自发性癫痫发作和认知功能障碍。针对这些级联反应可能为 TLE 患者提供疾病修饰治疗。Janus 激酶/信号转导和转录激活因子(JAK/STAT)抑制剂已成为潜在的疾病修饰疗法;然而,需要更详细地了解 JAK/STAT 在致痫反应中的参与,以提高治疗效果并减少与全局抑制相关的不良反应。
我们开发了一种小鼠系,其中他莫昔芬处理条件性地消除了前脑兴奋性神经元中的 STAT3 信号(nSTAT3KO)。在海马内海人酸(IHKA)注射后,通过连续在体脑电图分析野生型和 nSTAT3KO 小鼠的癫痫发作频率(癫痫发作频率)和记忆(情景性恐惧条件反射和运动学习)。IHKA 注射后 24 小时获得海马 RNA,并进行深度测序。
兴奋性神经元中的选择性 STAT3 敲除减少了癫痫发作的进展和海马记忆缺陷,而没有减少 IHKA 注射引起的细胞死亡或苔藓纤维发芽的程度。与脑损伤反应、神经元可塑性和学习记忆相关的主要网络中的基因表达得到了挽救。我们还首次提供了神经元 STAT3 可能直接影响脑炎症的证据。
抑制神经元 STAT3 信号转导改善了 TLE 动物模型的结果,防止了癫痫发作和认知合并症的进展,同时挽救了与癫痫发生相关的主要网络中致病性基因表达的变化。特异性靶向神经元 STAT3 可能是 TLE 的一种有效疾病修饰策略。