Jetter Reinhard, Riederer Markus
Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4 (R.J.);Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1 (R.J.); andUniversität Würzburg, Julius-von-Sachs-Institut für Biowissenschaften, D-97082 Wuerzburg, Germany (M.R.)
Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4 (R.J.);Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1 (R.J.); andUniversität Würzburg, Julius-von-Sachs-Institut für Biowissenschaften, D-97082 Wuerzburg, Germany (M.R.).
Plant Physiol. 2016 Feb;170(2):921-34. doi: 10.1104/pp.15.01699. Epub 2015 Dec 7.
Plant cuticular waxes play a crucial role in limiting nonstomatal water loss. The goal of this study was to localize the transpiration barrier within the layered structure of cuticles of eight selected plant species and to put its physiological function into context with the chemical composition of the intracuticular and epicuticular wax layers. Four plant species (Tetrastigma voinierianum, Oreopanax guatemalensis, Monstera deliciosa, and Schefflera elegantissima) contained only very-long-chain fatty acid (VLCFA) derivatives such as alcohols, alkyl esters, aldehydes, and alkanes in their waxes. Even though the epicuticular and intracuticular waxes of these species had very similar compositions, only the intracuticular wax was important for the transpiration barrier. In contrast, four other species (Citrus aurantium, Euonymus japonica, Clusia flava, and Garcinia spicata) had waxes containing VLCFA derivatives, together with high percentages of alicyclic compounds (triterpenoids, steroids, or tocopherols) largely restricted to the intracuticular wax layer. In these species, both the epicuticular and intracuticular waxes contributed equally to the cuticular transpiration barrier. We conclude that the cuticular transpiration barrier is primarily formed by the intracuticular wax but that the epicuticular wax layer may also contribute to it, depending on species-specific cuticle composition. The barrier is associated mainly with VLCFA derivatives and less (if at all) with alicyclic wax constituents. The sealing properties of the epicuticular and intracuticular layers were not correlated with other characteristics, such as the absolute wax amounts and thicknesses of these layers.
植物表皮蜡质在限制非气孔性水分散失方面起着关键作用。本研究的目的是在八种选定植物物种的角质层分层结构中定位蒸腾屏障,并将其生理功能与角质层内蜡层和表皮蜡层的化学成分联系起来。四种植物物种(三叶青、危地马拉刺参、龟背竹和秀丽鹅掌柴)的蜡质中仅含有超长链脂肪酸(VLCFA)衍生物,如醇类、烷基酯、醛类和烷烃。尽管这些物种的表皮蜡和角质层内蜡的组成非常相似,但只有角质层内蜡对蒸腾屏障很重要。相比之下,其他四种物种(酸橙、日本卫矛、黄柄南美藤和加西亚藤黄)的蜡质中含有VLCFA衍生物,同时高比例的脂环族化合物(三萜类、类固醇或生育酚)主要局限于角质层内蜡层。在这些物种中,表皮蜡和角质层内蜡对角质层蒸腾屏障的贡献相同。我们得出结论,角质层蒸腾屏障主要由角质层内蜡形成,但表皮蜡层也可能对其有贡献,这取决于物种特异性的角质层组成。该屏障主要与VLCFA衍生物相关,与脂环族蜡成分的相关性较小(如果有的话)。表皮层和角质层内蜡层的密封特性与其他特征,如这些层的绝对蜡含量和厚度,没有相关性。