Department of Systems and Natural Resources, School of Forest Engineering, Universidad Politécnica de Madrid, C/ José Antonio Nováis, 10, 28040, Madrid, Spain.
Centro para la Conservación de la Biodiversidad y el Desarrollo Sostenible, E.T.S.I. Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, 28040, Madrid, Spain.
Commun Biol. 2024 Mar 22;7(1):352. doi: 10.1038/s42003-024-06053-4.
Many biological surfaces have hairs, known as trichomes in plants. Here, the wettability and macro- and micro-scale features of olive leaves are analyzed. The upper leaf side has few trichomes, while the lower side has a high trichome density. By combining different techniques including electron and atomic force microscopy, trichome surfaces are found to be chemically (hydrophilic-hydrophobic) heterogeneous at the nano-scale. Both olive leaf surfaces are wettable by water, having a high water contact angle hysteresis and great drop adhesion. The ultra-structural pattern observed for epidermal pavement cells differs from the reticulate cuticle structure of trichomes which shows that leaf surface areas may be substantially different despite being located nearby. Our study provides evidence for the nano-scale chemical heterogeneity of a trichome which may influence the functional properties of biological surfaces, such as water and solute permeability or water capture as discussed here for plants.
许多生物表面都有毛发,在植物中被称为毛状体。在这里,分析了橄榄叶的润湿性以及宏观和微观特征。上叶面的毛状体较少,而下叶面的毛状体密度较高。通过结合电子和原子力显微镜等不同技术,发现毛状体表面在纳米尺度上存在化学(亲水-疏水)不均匀性。橄榄叶的两个表面都可被水润湿,具有较高的水接触角滞后和较大的液滴附着力。观察到的表皮平铺细胞的超结构模式不同于毛状体的网状角质层结构,这表明尽管位于附近,叶片表面的面积可能有很大差异。我们的研究为毛状体的纳米尺度化学不均匀性提供了证据,这种不均匀性可能会影响生物表面的功能特性,例如水和溶质的渗透性或水的捕获,正如本文中所讨论的植物那样。