Halim Adnan, Larsen Ida Signe Bohse, Neubert Patrick, Joshi Hiren Jitendra, Petersen Bent Larsen, Vakhrushev Sergey Y, Strahl Sabine, Clausen Henrik
Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark;
Centre for Organismal Studies (COS), University of Heidelberg, D-69120 Heidelberg, Germany;
Proc Natl Acad Sci U S A. 2015 Dec 22;112(51):15648-53. doi: 10.1073/pnas.1511743112. Epub 2015 Dec 7.
Dynamic cycling of N-Acetylglucosamine (GlcNAc) on serine and threonine residues (O-GlcNAcylation) is an essential process in all eukaryotic cells except yeast, including Saccharomyces cerevisiae and Schizosaccharomyces pombe. O-GlcNAcylation modulates signaling and cellular processes in an intricate interplay with protein phosphorylation and serves as a key sensor of nutrients by linking the hexosamine biosynthetic pathway to cellular signaling. A longstanding conundrum has been how yeast survives without O-GlcNAcylation in light of its similar phosphorylation signaling system. We previously developed a sensitive lectin enrichment and mass spectrometry workflow for identification of the human O-linked mannose (O-Man) glycoproteome and used this to identify a pleothora of O-Man glycoproteins in human cell lines including the large family of cadherins and protocadherins. Here, we applied the workflow to yeast with the aim to characterize the yeast O-Man glycoproteome, and in doing so, we discovered hitherto unknown O-Man glycosites on nuclear, cytoplasmic, and mitochondrial proteins in S. cerevisiae and S. pombe. Such O-Man glycoproteins were not found in our analysis of human cell lines. However, the type of yeast O-Man nucleocytoplasmic proteins and the localization of identified O-Man residues mirror that of the O-GlcNAc glycoproteome found in other eukaryotic cells, indicating that the two different types of O-glycosylations serve the same important biological functions. The discovery opens for exploration of the enzymatic machinery that is predicted to regulate the nucleocytoplasmic O-Man glycosylations. It is likely that manipulation of this type of O-Man glycosylation will have wide applications for yeast bioprocessing.
N-乙酰葡糖胺(GlcNAc)在丝氨酸和苏氨酸残基上的动态循环(O-连接的N-乙酰葡糖胺化)是除酵母(包括酿酒酵母和粟酒裂殖酵母)之外的所有真核细胞中的一个重要过程。O-连接的N-乙酰葡糖胺化通过与蛋白质磷酸化的复杂相互作用来调节信号传导和细胞过程,并通过将己糖胺生物合成途径与细胞信号传导相联系,作为营养物质的关键传感器。一个长期存在的难题是,鉴于酵母具有相似的磷酸化信号系统,它如何在没有O-连接的N-乙酰葡糖胺化的情况下存活。我们之前开发了一种用于鉴定人O-连接甘露糖(O-Man)糖蛋白质组的灵敏凝集素富集和质谱工作流程,并利用此流程在人细胞系中鉴定出大量O-Man糖蛋白,包括钙黏蛋白和原钙黏蛋白大家族。在这里,我们将该工作流程应用于酵母,旨在表征酵母O-Man糖蛋白质组,在此过程中,我们在酿酒酵母和粟酒裂殖酵母的核、细胞质和线粒体蛋白上发现了迄今未知的O-Man糖基化位点。在我们对人细胞系的分析中未发现此类O-Man糖蛋白。然而,酵母O-Man核质蛋白的类型以及所鉴定的O-Man残基的定位与在其他真核细胞中发现的O-连接的N-乙酰葡糖胺糖蛋白质组相似,这表明这两种不同类型的O-糖基化发挥着相同重要的生物学功能。这一发现为探索预计调控核质O-Man糖基化的酶机制开辟了道路。很可能对这种类型的O-Man糖基化进行操控将在酵母生物加工中有广泛应用。