Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, the Netherlands; Netherlands Proteomics Center, Utrecht, the Netherlands.
Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, the Netherlands; Netherlands Proteomics Center, Utrecht, the Netherlands.
Mol Cell Proteomics. 2021;20:100010. doi: 10.1074/mcp.R120.002093. Epub 2020 Dec 8.
Mass spectrometry-based glycoproteomics has gone through some incredible developments over the last few years. Technological advances in glycopeptide enrichment, fragmentation methods, and data analysis workflows have enabled the transition of glycoproteomics from a niche application, mainly focused on the characterization of isolated glycoproteins, to a mature technology capable of profiling thousands of intact glycopeptides at once. In addition to numerous biological discoveries catalyzed by the technology, we are also observing an increase in studies focusing on global protein glycosylation and the relationship between multiple glycosylation sites on the same protein. It has become apparent that just describing protein glycosylation in terms of micro- and macro-heterogeneity, respectively, the variation and occupancy of glycans at a given site, is not sufficient to describe the observed interactions between sites. In this perspective we propose a new term, meta-heterogeneity, to describe a higher level of glycan regulation: the variation in glycosylation across multiple sites of a given protein. We provide literature examples of extensive meta-heterogeneity on relevant proteins such as antibodies, erythropoietin, myeloperoxidase, and a number of serum and plasma proteins. Furthermore, we postulate on the possible biological reasons and causes behind the intriguing meta-heterogeneity observed in glycoproteins.
基于质谱的糖蛋白质组学在过去几年中经历了一些令人难以置信的发展。在糖肽富集、片段化方法和数据分析工作流程方面的技术进步,使糖蛋白质组学从一个主要集中于分离糖蛋白的特性研究的利基应用,过渡到一种能够同时对数千个完整糖肽进行分析的成熟技术。除了该技术催化的许多生物学发现外,我们还观察到越来越多的研究关注于全局蛋白质糖基化以及同一蛋白质上多个糖基化位点之间的关系。显然,仅仅用微异质性和宏异质性来描述蛋白质糖基化,即给定位置聚糖的变化和占有率,不足以描述观察到的位点之间的相互作用。在这个观点中,我们提出了一个新术语,即元异质性,来描述更高层次的糖基化调控:给定蛋白质的多个位点上的糖基化变化。我们提供了相关蛋白(如抗体、促红细胞生成素、髓过氧化物酶和一些血清和血浆蛋白)上广泛的元异质性的文献实例。此外,我们还推测了糖蛋白中观察到的有趣的元异质性背后可能的生物学原因和原因。