Suppr超能文献

使用PC12细胞对导电聚(ε-己内酯)基纳米复合支架进行制备、表征及体外评估。

Preparation, characterisation, and in vitro evaluation of electrically conducting poly(ɛ-caprolactone)-based nanocomposite scaffolds using PC12 cells.

作者信息

Gopinathan Janarthanan, Quigley Anita F, Bhattacharyya Amitava, Padhye Rajiv, Kapsa Robert M I, Nayak Rajkishore, Shanks Robert A, Houshyar Shadi

机构信息

Advanced Textile and Polymer Research Lab, PSG Institute of Advanced Studies, Coimbatore, India.

Centre for Clinical Neurosciences and Neurological Research, St. Vincent's Hospital, Victoria, 3065, Australia.

出版信息

J Biomed Mater Res A. 2016 Apr;104(4):853-65. doi: 10.1002/jbm.a.35620. Epub 2015 Dec 29.

Abstract

In the current study, we describe the synthesis, material characteristics, and cytocompatibility of conducting poly (ɛ-caprolactone) (PCL)-based nano-composite films. Electrically conducting carbon nano-fillers (carbon nano-fiber (CNF), nano-graphite (NG), and liquid exfoliated graphite (G)) were used to prepare porous film type scaffolds using modified solvent casting methods. The electrical conductivity of the nano-composite films was increased when carbon nano-fillers were incorporated in the PCL matrix. CNF-based nano-composite films showed the highest increase in electrical conductivity. The presence of an ionic solution significantly improved the conductivity of some of the polymers, however at least 24 h was required to absorb the simulated ion solutions. CNF-based nano-composite films were found to have good thermo-mechanical properties compared to other conducting polymer films due to better dispersion and alignment in the critical direction. Increased nano-filler content increased the crystallisation temperature. Analysis of cell viability revealed no increase in cell death on any of the polymers compared to tissue culture plastic controls, or compared to PCL polymer without nano-composites. The scaffolds showed some variation when tested for PC12 cell attachment and proliferation, however all the polymers supported PC12 attachment and differentiation in the absence of cell adhesion molecules. In general, CNF-based nano-composite films with highest electrical conductivity and moderate roughness showed highest cell attachment and proliferation. These polymers are promising candidates for use in neural applications in the area of bionics and tissue engineering due to their unique properties.

摘要

在本研究中,我们描述了基于导电聚(ε-己内酯)(PCL)的纳米复合薄膜的合成、材料特性和细胞相容性。使用导电碳纳米填料(碳纳米纤维(CNF)、纳米石墨(NG)和液相剥离石墨(G)),通过改进的溶剂浇铸法制备多孔膜型支架。当碳纳米填料掺入PCL基质中时,纳米复合薄膜的电导率增加。基于CNF的纳米复合薄膜的电导率增加幅度最大。离子溶液的存在显著提高了一些聚合物的电导率,然而吸收模拟离子溶液至少需要24小时。由于在临界方向上具有更好的分散性和排列,与其他导电聚合物薄膜相比,基于CNF的纳米复合薄膜具有良好的热机械性能。纳米填料含量的增加提高了结晶温度。细胞活力分析表明,与组织培养塑料对照相比,或者与不含纳米复合材料的PCL聚合物相比,任何一种聚合物上的细胞死亡均未增加。在测试PC12细胞附着和增殖时,支架表现出一些差异,然而在没有细胞粘附分子的情况下,所有聚合物均支持PC12细胞的附着和分化。总体而言,具有最高电导率和适度粗糙度的基于CNF的纳米复合薄膜表现出最高的细胞附着和增殖。由于其独特的性能,这些聚合物有望用于仿生学和组织工程领域的神经应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验